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Removing camera shake

✦ Can you fix a blurry image by sharpening it in Photoshop?
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Removing camera shake, 2nd try

✦ camera shake can be modeled as a 2D convolution

✦ recall that discrete convolution replaces each pixel with a 
linear combination of nearby pixels

✦ in linear algebra, a matrix replaces each element in a 
vector with a linear combination of all other elements

∴ convolution can be formulated as matrix multiplication
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Convolution as matrix multiplication
✦ let the sharp scene be represented by a vector

✦ let the filter kernel be represented as a second vector

✦ the convolution           becomes the matrix-vector product
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f = 4     7     8     4     2     5     9     6     8     4     2[ ]

g = 1   2   3   2   1[ ]

where  x = f T

f ⊗ g

and A is built from g as shown
Ax =

3     2     1     0     0     0     0     0     0     0     0

2     3     2     1     0     0     0     0     0     0     0

1     2     3     2     1     0     0     0     0     0     0

0     1     2     3     2     1     0     0     0     0     0

0     0     1     2     3     2     1     0     0     0     0

0     0     0     1     2     3     2     1     0     0     0

0     0     0     0     1     2     3     2     1     0     0

0     0     0     0     0     1     2     3     2     1     0

0     0     0     0     0     0     1     2     3     2     1

0     0     0     0     0     0     0     1     2     3     2

0     0     0     0     0     0     0     0     1     2     3
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(Ax must be normalized by ∑g)
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Inverting convolution (deconvolution)

✦ if the blurred image     is given by

✦ then the sharp scene     can be recovered by                

where
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Ax = b
b

x =  A−1b

x

A−1 =

    0.8571   -0.7857    0.0000    0.6429   -0.5714              0    0.4286   -0.3571   -0.0000    0.2143   -0.1429

   -0.7857    1.5536   -0.7500   -0.5893    1.1071   -0.5000   -0.3929    0.6607   -0.2500   -0.1964    0.2143

    0.0000   -0.7500    1.5000   -0.7500   -0.5000    1.0000   -0.5000   -0.2500    0.5000   -0.2500    0.0000

    0.6429   -0.5893   -0.7500    1.9821   -1.1786   -0.5000    1.3214   -0.7679   -0.2500    0.6607   -0.3571

   -0.5714    1.1071   -0.5000   -1.1786    2.2143   -1.0000   -0.7857    1.3214   -0.5000   -0.3929    0.4286

             0   -0.5000    1.0000   -0.5000   -1.0000    2.0000   -1.0000   -0.5000    1.0000   -0.5000    0.0000

    0.4286   -0.3929   -0.5000    1.3214   -0.7857   -1.0000    2.2143   -1.1786   -0.5000    1.1071   -0.5714

   -0.3571    0.6607   -0.2500   -0.7679    1.3214   -0.5000   -1.1786    1.9821   -0.7500   -0.5893    0.6429

   -0.0000   -0.2500    0.5000   -0.2500   -0.5000    1.0000   -0.5000   -0.7500    1.5000   -0.7500    0.0000

    0.2143   -0.1964   -0.2500    0.6607   -0.3929   -0.5000    1.1071   -0.5893   -0.7500    1.5536   -0.7857

   -0.1429    0.2143    0.0000   -0.3571    0.4286    0.0000   -0.5714    0.6429    0.0000   -0.7857    0.8571
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(again omitting normalization by ∑g; see http://graphics.stanford.edu/courses/cs178-09/demos/deconvolution.m)
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Why is deconvolution hard?

✦ matrix A and blurred image b are typically very big

✦ for a 10 megapixel image
• A has 10 million rows and 10 million columns
• b has 10 million entries

✦ matrix A is typically very sparse
• mostly zeros

✦ methods for solving big sparse systems of equations
• conjugate gradient descent
• etc.

8
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Another reason deconvolution is hard

✦ matrix A may be poorly conditioned
• a small change (or noise) in b causes a large change in x

9

?⊗ =

?⊗ =

A                 x           =           b
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Another reason deconvolution is hard

✦ matrix A may be poorly conditioned
• a small change (or noise) in b causes a large change in x

✦ equivalently, its Fourier transform may contain zeros
• sinusoids of some frequencies will be missing from b

✦ to be well conditioned, the filter shouldn’t be smooth
• bad:                better:

• convolution by the first throws away detail, creating zeros
• convolution by the second makes many sharp copies

✦ inverting an ill-conditioned A produces a noisy result
10
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Blind deconvolution

✦ sometimes you don’t know x or A
• i.e. you don’t know the sharp scene or the filter

✦ solving blind deconvolution problems
• use a prior assumption about what the

unknown sharp scene x should look like

✦ this is hard, and we’re not very good at it
• solutions typically contain ringing, or worse...

11
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Removing camera shake
[Fergus SIGGRAPH 2006]

✦ deconvolve blurred image,
using the statistics of natural scenes as a prior
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blurred image Photoshop Unsharp Mask deconvolution

blur kernel
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Removing camera shake
[Yuan SIGGRAPH 2007]

✦ deconvolve long-exposure (blurred) image,
using short-exposure (noisy) image as a prior

13

long exposure
(blurry)

joint deconvolutionshort exposure
(dark)

same, scaled up
(noisy)
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Removing motion blur
[Raskar SIGGRAPH 2006]
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continuous shutter
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Removing motion blur
[Raskar SIGGRAPH 2006]
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continuous shutter fluttered shutter
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Removing defocus

✦ a.k.a. extended depth of field (EDOF)

✦ all-focus algorithm

✦ wavefront coding + deconvolution

✦ rubber focus + deconvolution

18
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All-focus algorithm
[Agarwala SIGGRAPH 2004]
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Now available in

Photoshop CS4 !!

1 2 3 4 all
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Wavefront coding
[Dowski 1995]
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profile of
cubic phase plate

lens plus
cubic phase plate

ray trace through
a normal lens

MTFs through lens and cubic phase plate
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Wavefront coding
[Dowski 1995]
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normal lens stopped down wavefront coded after deconvolution

normal wavefront deconvolved



© 2009 Marc Levoy

Slide credits
✦ Andrew Adams
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