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Why

study sampling theory?

Is App!
What ¢

Why do [ sometimes get moiré artifacts in my images?
What 1s an antiahasing filter?
How many megapixels is enough?

How do | compute circle of contusion for depth of field?

e’s “Retina Display” just hype?

o MTF curves in lens reviews mean?

What c
What's

shillliie el e e 4+

oes Photoshop do when you downsize/upsize?

the difference between more pixels and more bits?




Outline

+ frequency representations of images
e filtering, blurring, sharpening

e MTF as a measure of sharpness in images

+ resolution and human perception
e the spatial resolution of typical display media
e the acuity of the human visual system

e the right way to compute circle of confusion ( C)

+ sampling and aliasing
e aliasing in space and time
e prefiltering using convolution to avoid aliasing

e prefiltering and sampling in cameras and Photoshop

+ sampling versus quantization




Frequency representations

v . (Foley)
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+ asum of sine waves, each of different wavelength ( freguency )
and height (amplitude ), can approximate arbitrary functions

+ to adjust horizontal position ( phase ), replace with cosine
waves, or use a mixture of sine and cosine waves




Frequency representations

+ Fourier series: any continuous, integrable, periodic function
can be represented as an infinite series of sines and cosines

g — %0 + i [an cos(nx) + b, sin(nx)]

n=1

Not responsible on exams
for orange-tinted slides

— —

+ asum of sine waves, each of different wavelength ( freguency )
and height (amplitude ), can approximate arbitrary functions

+ to adjust horizontal position ( phase ), replace with cosine
waves, or use a mixture of sine and cosine waves




Fourier transforms of 1mages

6 gives angle of sinusoid

r gives spatial frequency
brightness gives amplitude
of sinusoid present in image

% In Matlab:

image = double(imread('flower.tif'))/255.0;
fourier = fftshift(fft2(ifftshift(image)));
fftimage = log(max(real(fourier),0.0))/20.0;

complete spectrum

1s two 1mages -
sines and cosines

1mage spectrum




A typical photograph

spectrum




An 1image with higher frequencies

spectrum

image
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Blurring in the Fourier doma
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1mage
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Original flower

spectrum




Sharpening in the Fourier domain

spectrum




Q. What does this filtering operation do?

spectrum




Q. What does this filtering operation

1mage spectrum




Blurring in x, sharpening in y

1mage spectrum
argh, astigmatism!
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Describing sharpness in images:
the modulation transter function (M TF)

Bar pattern, Sine pattern,

50 = 1e+004 Ip/mm; flens = 61 Ip/mm; lord = 2

Amplitude

*H"

10°

Line pairs per mm; MTF = 50%,10% @ 61, 183/mm

(i1matest.com)

+ the amount of each

spatial frequency that can
be reproduced by an

optical system

loss may be due to
misfocus, aberrations,
diffraction,
manufacturing defects,
nose smudges, etc.

MTF is contrast at each
frequency relative to
original signal
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Two ditferent MTF curves

+ 1n one curve, contrast stays high, but drops off at a
relatively low resolution

+ 1n the other curve, higher-resolution features are
preserved, but contrast is low throughout
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Sharpness versus contrast

50 = 1e+004 Ip/mm; flens = 61 Ip/mm; lord = 2

Bar pattg ""I"”

Bar patteé [

Bar pattern, Sine pattern,

'
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Fossiof{Contrast

Line pairs per mm; MTF = 50%,10% @ 61, 183/mm

(imatest.com) (cambridgeincolour.com)
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Sharpness versus contrast

sharpen

if original were noisy,
restoration would
look very noisy

— S

restore
contrast

Fossiof{Contrast

(cambridgeincolour.com)




Recap

+ any image can be equivalently represented by its Fourier
transform, a.k.a. frequency or spectral representation

e weighted sum of sine and cosine component images

» each having a frequency, amplitude, and orientation in the plane

+ filtering, for example blurring or sharpening, can be implemented
by amplifying or attenuating selected frequencies

e 1.e. modifying the contrast of selected sine or cosine components
relative to others, while maintaining same average over all components

e attenuating high frequencies = low-pass-filtering = blurring

e attenuating low frequencies = high-pass filtering = sharpening

+ MTF measures preservation of frequencies by an optical system
 subjective image quality depends on both sharpness and contrast

 both can be restored, but at a price (in ringing or noise)

: Questions?
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Spatial resolution of display media

pitch = Ax #E density = 1/A x

+ Example #1: Macbook Air (laptop)
e 900 pixels on 7” high display

. . Line printers are 300 dpu.
e Ax =7"/900 pixels = 0.0078 /pl& This is why we don'’t like
e 1/A x =129 dpi (dots per inch) reading on laptops.

+ Example #2: Kindle 2
e 800 pixels on 4.8” high display
e 1/A x =167 dpi
+ Example #3: iDéd iPad3 J ! *
2048, W4 pixels on 7.8” high display | ' i
o 1/A x = 1§ dpi 263

S S




Spatial frequency on the retina

assume the minimum i > 0
period p of a sine e <> g
wave is a black-white —— ,
S
PLrres pat |<7 viewing distance d

+ Example #1: Macbook Air viewed atd = 18"
e 900 pixels on 7” high display, p = 2 x 0.0078”
e retinal arc 0 = 2 arctan (p / 2d) = 0.05°
e spatial frequency on retina 1/60 = 20 cycles per degree

Q. What is the acuity of the human visual system?

21




Human spatial sensitivity
(Campbell-Robson Chart)

8

I

NI



Human spatial sensitivity

Human Contrast Sensitivity

1000 — , ' : (horizontal axis
not Comparable
to 1mage on
> previous slide)
= 100}
»
| -
0 .
SD- _ cutoff is at
7
S 10l Visible Stimuli | about 50 cycles
S 5 per degree
= ]
0.1 1 10

Spatial Frequency (cycles/degree)

23 (psych.ndsu.nodak.edu)




Spatial frequency on the retina

assume the minimum i > 0

period p of a sine e <> p ———

wave 1s a black-white —— . ' |
S

PLrres pat |<7 viewing distance d

+ Example #1: Macbook Air viewed atd = 18"
e 900 pixels on 7” high display, sop =2 % 0.0078”
e retinal arc 0 = 2 arctan (p / 2d) = 0.05°
e spatial frequency on retina 1/60 = 20 cycles per degree

\ not nearly as high

as human acuity

— T—
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(Graham Flint)

Balboa Park, San Diego

(original 1s 40K x 20K pixels, Gates Hall print is 72" x 36")




Spatial frequency on the retina

\/

assume the minimum i

period p of a sine <> p :BC ‘‘‘‘‘ _ :“
I iris tic °

wave 1s a black-white ——

pixel pair o , e
|<7 viewing distance d >

+ Example #1: Macbook Air viewed atd = 18"
e 900 pixels on 7” high display, p = 2 x 0.0078”
e retinal arc 6 = 2 arctan (p / 2d) = 0.05°
o spatial frequency on retina 1/0 = 20 cycles per degree

much finer than

+ Example #2: gigapixel photo viewed atd =48” ~, e
» 20,000 pixels on 36” high print, p = 2 x 0.0018” /.
e spatial frequency on retina 1/ = 232 cycles per degree

26
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Human acuity & circle of confusion

+ the maximum allowable circle of confusion (C) in a

photograph can be computed from human spatial acuity
projected onto the intended display medium

e depends on viewing distance

+ Example: photographic print from viewed at 12”

e max human acuity on retina 1/0 = 50 cycles per degree

e minimum detectable retinal arc 6@ = 0.02°

e minimum feature size p =2 X 12”7 X tan (0 /2) = 0.0043” (0.1mm)

+ assume 5" x 7" print and Canon 5D II (5616 x 3744 pixels)
o 57 /3744 pixels = 0.0017"/pixel (0.04mm)
e therefore, circle of confusion can be 2.5 pixels wide before it’s blurry

o C = 6.4u per pixel x 2.5 pixels = 16u




Recap

+ spatial resolution of display media 1s measured by

o pitch (distance between dots or pixels) or density (dots per inch)

+ effect on human observers is measured by
e retinal angle (degrees of arc) or frequency (cycles per degree)

e depends on viewing distance

+ human spatial acuity 1s about 50 cycles per degree
s depends on contrast

e convert back to pitch to obtain circle of confusion for depth of field

Questions?

28
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Sampling and aliasing

abstract function spatial aliasing in images

nan ]
il |
v \

ol | | | | | 1 | | | 3
S e e o Tty samen, - EEAAT (Ao - sy fogei L)

Y 4/ pi )

(http://ptolemy.eecs.berkeley.edu/eecs20/week 13/moire.html)

+ alasing 1s high frequencies masquerading as low
frequencies due to insufficiently closely spaced samples




Sampling and aliasing

abstract function

temporal alhasing

240 pm
¢

©2007 M. Bach @

(http://www.michaelbach.de/ot/mot wagonWheel/index.html)
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spatial aliasing in images

m‘|“||“

(http://ptolemy.eecs.berkeley.edu/eecs20/week 13/moire.html)

temporal ahasing in audio

- =) )
[ start [ stop I scale w 440

A sinusoid and its samples ( fill )

10F
05}
0ol

05

-10L
00 05 1.0 1.5 20 on 30 35 4.0
Time in seconds x10

(http://ptolemy.eecs.berkeley.edu/eecs20/week13/aliasing.html)
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Fourier analysis of aliasing

AT

+ Nyquist-Shannon sampling theorem: a function having
frequencies no higher than n can be completely determined by
samples spaced / /2n apart

fsampling 2 2 X -fcutoﬁ
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Retinal sampling rate

*

the human retina consists of discrete sensing cells
therefore, the retina performs sampling
sampling theory says fumiing > 2% feuop

if observed human cutoff 1s 50 cycles per degree,
then its sampling rate must be > 100 samples per degree

this agrees with observed retinal cell spacing!

spacing between [,,M cone

cells 1s 1p = 30 arc-seconds

(1/120°)

(Cornsweet)
© Marc Levoy
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Retinal sampling rate

fs‘am/)/ing = 2 X ‘f('llmﬁ

yes, almost equal

/ to human acuity

+ Example #3: 1iPhone 4 “Retina Display” viewed at 12” inches

e 960 pixels on 2.94" high display
e 1/A x = 326 dpi

e spatial frequency on retina = 34 cycles per degree
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Aliasing 1n photography

Sl 1€IlS creates a focused image on the SENsor

+ suppose the sensor measured this image at points on a
2D grid, but ignored the imagery between points?

e a.k.a. point sampling
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Simulation of point sampling

THE GOBBLING GLUTTONS

ONCE UPON A TIME, WALDO

EMBARKED UPON A FANTASTIC

JOURNEY. FIRST. AMONC A

THRONC OF COBBLING CLUTTONS,

HE MET WIZARD WHITEBEARD, WHO
COMMANDED HIM TO FIND A SCROLL AND
THEN TO FIND ANOTHER AT EVERY STACE OF
HIS JOURNEY FOR WHEN HE HAD FOUND

12 SCROLLS, HE WOULD UNDERSTAND THE
TRUTH ABOUT HIMSELF,

IN EVERY PICTURE FIND WALDO. WOOF (BUT

ALL YOU CAN SEE IS HIS TAIL). WENDA. WIZARD
WHITEBEARD. ODLAW, AND THE SCROLL. THEN
FIND WALDO'S KEY, WOOF'S BONE (IN THIS SCENE
IT'S THE BONE THAT'S NEAREST TO HIS TAIL),
WENDA'S CAMERA, AND ODLAW'S BINOCULARS,

% v O e S
THERE ARE ALSO 28 WALDO WATCHERS, EACH OF
WHOM APPEARS ONLY ONCE SOMEWHERE IN
THE FOLLOWING 12 PICTURES. AND ONE MORE
THING! CAN YOU FIND ANOTHER CHARACTER,
NOT SHOWN BELOW, WHO APPEARS ONCE IN
EVERY PICTURE EXCEPT THE LAST?

A 1tk

(lassic Media)
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Simulation of point sampling
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Prehiltering to avoid aliasing

+ before sampling, remove (or at least attenuate) sIne waves
of frequency greater than half the sampling rate

1

f e replace removed
cutoff 2 sampling

waves with their
average Intensity
(gray in this case)

AMAAAMAMAAAVAAAAAAAAAAAA.

unfiltere prehiltered partially

pre-filtered
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Methods for prefiltering

+ method #1: frequency domain

1. convert image to frequency domain
2. remove frequencies above feuof (replace with gray)
3. convert back to spatial domain

4. perform point sampling as before

e conversions are slow

* not clear how to apply this method to 1mages as they enter a camera

+ method #2: spatial domain

1. blur image using convolution

2. perform point sampling as before

e direct and faster

e equivalent to method #1 (proof is beyond scope of this course)




Convolution 1in 1D

+ replace each input value with a weighted sum of itself
and its neighbors, with weights given by a filter function

fEclEglel = > flkl-glx=FK

f=—c0

input signal f[x] e e e e o e o,

filter g[x] 9 :

output f[x] * g[x]

39




Convolution in 1D

+ replace each input value with a weighted sum of itself
and its neighbors, with weights given by a filter function

fEclEglel = > flkl-glx=FK

f=—c0

input signal f[x] e e e e o e o,

== notice that the filter
gets flipped when applied

— N

output f[x] * g[x] 7

40
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Convolution 1in 1D

+ replace each input value with a weighted sum of itself
and its neighbors, with weights given by a filter function

fEclEglel = > flkl-glx=FK

f=—c0

input signal f[x] e e e e o e o,

output f[x] * g[x] ey




Convolution 1in 1D

+ replace each input value with a weighted sum of itself
and its neighbors, with weights given by a filter function

fEclEglel = > flkl-glx=FK

f=—c0

input signal f[x] e e e e o e o,

output f[x] * g[x] R

42
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More convolution formulae

+ 1D discrete: defined only on the integers

A = o Al dE

f=—c0

+ 1D continuous: defined on the real line

Z f(0)-g(x-1)dr

(ELASE DEWND);

http://graphics.stanford.edu/courses/
cs178/applets/convolution.html




More convolution formulae

+ 1D discrete: defined only on the Integers

A = o Al dE

e
+ 1D continuous: defined on the real line

f#gx) = | f(1)-gx-1)dr
+ 2D discrete: defined on the x, y integer grid
flx,y1* glx,y]l = Z Z fli,j1- glx—i,y— j]

:—OO ]_—OO

+ 2D continuous: defined on the x,y plane

faenxgxy) = || f@.1,) gx-1,.y-1,)dr,dr,

'[1 — —c0 ’L’2 = —00

@IvVIarc e voy
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Prehltering reduces aliasing

iy i ame LR e I BT
i PR e E i B il

i

every 4'h pixel in x and y convolved by 4x4 pixel rect,
then sampled every 4th pixel
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Prefhiltering & sampling in photography

+ photography consists of convolving the focused image

by a 2D rect filter, then sampling on a 2D grid
e each point on this grid is called a pixel

+ 1if convolution is followed by sampling, you only need to
compute the convolution at the sample positions

e for a rect filter of width equal to the sample spacing, this 1s
equivalent to measuring the average intensity of the
focused image 1n a grid of abutting squares

e this is exactly what a digital camera does

+ the width of the rect 1s typically equal to the spacing
between sample positions

e narrower leaves aliasing; wider produces excessive blur




Prehiltering & sampling in photography
(contents of whiteboard)
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© Marc Levoy
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Upsizing/downsizing in Photoshop

+ resampling 1s the conversion of a discrete image into a
second discrete 1mage having more or fewer samples

1. interpolate between samples using convolution
2. if downsizing, blur to remove high frequencies

3. point sample at the new rate

e these steps can be simplified into a single discrete convolution
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Interpolation via convolution
(contents of whiteboard)

I'(X) s - Sl e
N @ - =
= T2
4 e R —
v s | 1 o L S SR
. N . z 11\ | KA
R 3 S 570
discle\ic N\ ~l+ +'/+ 4
HREHE S e
&P

2 ik = r"—/\
> L 3¢

+ 1f the input is a discrete (i.e. sampled) function, then convolution can
be treated as placing an Verticaﬂy-scaled copy of the filter 7(x) at each
sample position as shown, summing the results, and dividing by the
area under the filter (1.0 in the cases shown)

+ the effect is to interpolate between the samples, hence reconstructing a
continuous function from the discrete function




Upsizing by 16:1

nearest neighbor
(a.k.a. rect)

bilinear

bicubic




aliasing!
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Recap

+ aliasing 1s high frequencies masquerading as low frequencies
due to insuthciently closely spaced samples

+ reduce aliasing by prefiltering the input before sampling
e implement by multiplication in the frequency domain
e or convolution in the spatial domain

e in the spatial domain, the prefilter is denoted g(x)

+ 1n digital photography:
e g(x) is a pixel-sized rect, thus averaging intensity over areas

e if the rect 1s too small, aliasing occurs; solve with antialiasing filter

Questions?




Sampling versus quantization

Creation of a Digital Image
Analog Image Digital Sampling Pixel Quantization

249 [244 zao|m|209|ns|227 251|255

248|245210] 93 | 81 [120] 97 [193[2s4
250 | 170[133] 84 [137]120|104[ s45] 283
241|116 118[107[134]138] 96 | 92 [s63
277|142 121|113[s24 115 s07| 71 [ 479
234|106 84 | 125 97 | s08] 125[ 106204
241[202]102[132] 75 | 73 |141|246[2s2
263 |262{244] 238 178|198 242|250 245
265 [248(244

(a) (b)

Figure 1

(http://learn.hamamatsu.com/articles/digitalimagebasics.html)

+ an image 1s a function f(X)

e typically (x) = (x,y) and f =R

+ we sample the domain (¥) of this function as pixels

(Canon)

+ we quantize the range f of this function as intensity levels

53




E l 8 bits x R,G,B =
XdImpile 24 bits per pixel

"
l‘

Canon 11
300mm,

54
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8 bits x R,G,B =
24 bits per pixel
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6 bits x R,G,B =
18 bits per pixel
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5 bits x R,G,B =
15 bits per pixel
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4 bits x R,G,B =
12 bits per pixel
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3 bits x R,G,B =
9 bits per pixel




256 colors (8 bits) uniformly

Di h : distributed across RGB cube,
t erlng patterned dithering in Photoshop




256 colors (8 bits) adaptively

Di h r. distributed across RGB cube,
e lng patterned dithering in Photoshop
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Dithering versus halftoning

dithering for display (on a screen)
o palette of a few hundred colors (uniform or adaptive)

e flip some pixels in each neighborhood to the next
available color in the palette to approximate
intermediate colors when viewed from a distance

halftoning for printing (on paper)
e palette of only 3 or 4 colors (primaries)

e print each primary as a grid of dots, superimposed
but slightly offset from the other primaries, and vary
dot size locally to approximate intermediate colors

both techniques are applicable to full-color or
black and white imagery

both trade off spatial resolution to obtain more
colors, hence to avoid quantization (contouring) &y




Dithering versus a%lftomn

N . X0 . o

T L g g
AN TR
g 5
Wi
52
X
32 X3
. s
% b
v H : H
» =
o <
. % ¥
da . 3 X 2
.I . &) s

; binary dithering

(see http://bisqwit.iki.fi/jutut/
colorquant/ for more examples)

63 grayscale halftoning color halftoing
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Recap

+ vampling describes where 1n its domain you measure a function
e for uniformly spaced samples, you can specify a vampling rate
e if the sampling rate 1s too low, you might suffer from aliasing

e you can reduce alhasing by prefiltering

+ quantization describes how you represent these measurements
e for uniformly spaced levels, you can specity a bit depth
o if the bit depth is too low, you might sutfer from contouring

e you can reduce contouring by dithering (it displaying the image on a
screen) or halftoning (if printing it on paper)

Questions?
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+ Pat Hanrahan

> Cornsweet, T.N., Visual Perception, Kluwer Academic Press, 1970.




