Light field photography

CS 178, Spring 2013

Marc Levoy
Computer Science Department
Stanford University

The light field (in geometrical optics)

Radiance as a function of position and direction in a static scene with fixed illumination

L is radiance in watts / (m² steradians)

Dimensionality of the light field

• for general scenes

⇒ 5D function

 $L(x, y, z, \theta, \phi)$

• in free space

⇒ 4D function

L(?)

Dimensionality of the light field

• for general scenes

⇒ 5D function

 $L(x, y, z, \theta, \phi)$

• in free space

⇒ 4D function

L(u, v, s, t)

two-plane parametrization

Devices for recording light fields

big scenes

handheld camera

[Buehler 2001]

• array of cameras

[Wilburn 2005]

→ • plenoptic camera

[Ng 2005]

→ • light field microscope

[Levoy 2006]

small scenes

and creating Devices for recording light fields

big scenes

handheld camera

[Buehler 2001]

• array of cameras

[Wilburn 2005]

→ • plenoptic camera

[Ng 2005]

→ • light field microscope

[Levoy 2006]

small scenes

→ • light field illumination

Stanford Multi-Camera Array

[Wilburn SIGGRAPH 2005]

• $640 \times 480 \text{ pixels} \times 30 \text{ fps} \times 128 \text{ cameras}$

- synchronized timing
- continuous streaming
- flexible arrangement

Synthetic aperture photography

Example using 45 cameras [Vaish CVPR 2004]

Light field photography using a handheld plenoptic camera

Ren Ng, Marc Levoy, Mathieu Brédif, Gene Duval, Mark Horowitz and Pat Hanrahan

(Proc. SIGGRAPH 2005 and TR 2005-02)

Conventional versus light field camera

Conventional versus light field camera

Prototype camera

Contax medium format camera

Adaptive Optics microlens array

Kodak 16-megapixel sensor

125μ square-sided microlenses

 $4000 \times 4000 \text{ pixels} \div 292 \times 292 \text{ lenses} = 14 \times 14 \text{ pixels per lens}$

Digital refocusing

Example of digital refocusing

Refocusing portraits

Light field photography

(FLASH DEMO)

Extending the depth of field

conventional photograph, main lens at f/4

conventional photograph, main lens at f/22

light field, main lens at f/4, after all-focus algorithm [Agarwala 2004]

Example of moving the observer

Moving backward and forward

Commercialization

• trades off (excess) spatial resolution for ability to refocus and adjust the perspective

• sensor pixels should be made even smaller, subject to the diffraction limit, for example:

```
36mm × 24mm ÷ 2.5μ pixels = 266 Mpix
20K × 13K pixels
4000 × 2666 pixels × 20 × 20 rays per pixel
```

or

 $2000 \times 1500 \text{ pixels } \times 3 \times 3 \text{ rays per pixel} = 27 \text{ Mpix}$

Other devices for capturing light fields

Stanford Multi-Camera Array

Manex's bullet time array

Other devices for capturing light fields

Stanford Spherical Gantry

used to measure light scattering for rendering translucent materials

Lego gantry for capturing light fields (built by Andrew Adams)

calibration point

Flash-based viewer for light fields

(written by Andrew Adams)

Flash-based viewer for light fields (written by Andrew Adams)

The Lego gantry captures a light field of itself

Light Field Microscopy

Marc Levoy, Ren Ng, Andrew Adams, Matthew Footer, and Mark Horowitz

(Proc. SIGGRAPH 2006)

Example light field micrograph

ordinary microscope

light field microscope

Example light field micrograph

focal stack

Examples

fern spore (60x, autofluorescence)

Golgi-stained neurons

Zebrafish optic tectum (Florian Engert / Ruben Portugues)

genetically modified to express GFP (40x)

calcium imaging of neural activity

3D reconstruction

• 4D light field → digital refocusing →
3D focal stack → deconvolution microscopy →
3D volume data

3D reconstruction (Stephen Smith / Todd Anderson)

• 4D light field \rightarrow digital refocusing \rightarrow 3D focal stack \rightarrow deconvolution microscopy \rightarrow 3D volume data

Combined light field microscope (LFM) and light field illuminator (LFI)

Marc Levoy,
Zhengyun Zhang,
Ian McDowall
(Journal of Microscopy, 2009)

Applications

- exotic microscope illumination
- reducing scattering using 3D "follow spots"
- characterizing and correcting for aberrations
- microscopic structured light rangefinding
- gonioreflectometer for opaque surfaces
- optical stimulation of neural tissues in 3D