Metropolis Sampling

Matt Pharr
cs348b

May 20, 2003

Introduction

e Unbiased MC method for sampling from
functions’ distributions

e Robustness in the face of difficult problems

e Application to a wide variety of problems

e Flexibility in choosing how to sample

e Introduced to CG by Veach and Guibas

Overview

e For arbitrary f(x) = R, x € ()

Overview

e For arbltrary f(x) = R, x €
o Define I(f) = [, f(z)dQ so foar = [/I(f)

Overview

e For arbitrary flz) =R, z €

o Define I(f) = [, f(z)dQ2 so foar = f/I(f)
o Generates samples X {z:}, i ~ foar

e Without needing to compute fpq¢ or I(f)

Overview

e Introduction to Metropolis sampling

e Examples with 1D problems

e Extension to 3D, motion blur

e Overview of Metropolis Light Transport

Basic Algorithm

e Function f(x) over state space §2, f:{) — R.
e Markov Chain: new sample z; using x;_;

Basic Algorithm

e Function f(x) over state space §2, f:{) — R.

e Markov Chain: new sample z; using x;_;

e New samples from mutation to x;_; — x’

e Mutation accepted or rejected so x; ~ fpar

o If rejected, x; = 2,1

e Acceptance guarantees distribution of x; is the
stationary distribution

Pseudo-code

x = x0
for 1 =1 ton
x’ = mutate(x)
a = accept(x, x’)
if (random() < a)
X = x’
record(x)

Expected Values

e Metropolis avoids parts of {2 where f(x) is
small

e But e.g. dim parts of an image need samples

e Record samples at both z and

e Samples are weighted based on a(z — z’)

e Same result in the limit

Expected Values — Pseudo-code

x = x0
for 1 =1 ton
x’ = mutate(x)
a = accept(x, x’)
record(x, (1-a) * weight)
record(x’, a * weight)
if (random() < a)
X = X’

Mutations, Transitions, Acceptance

e Mutations propose x’ given x;

e T(x — x') is probability density of proposing
x' from x

e a(x — x’) probability of accepting the
transition

Detailed Balance — The Key

e By defining a(x — ') carefully, can ensure

f(@) Tz — 2) a(z — 2') =
f(2)T(2' — z)a(z’ — x)

e Since f and 1’ are given, gives conditions on
acceptance probability
e (Will not show derivation here)

Acceptance Probability

e Efficient choice:

a(z — &) = min (1, fv((i)) JTE;: : ;)))

Acceptance Probability — Example |

o IfQ=a,band f(a) =9, f(b) =1

o |f

mutate(x) = { Z - £<05

e [hen transition densities are

otherwise

T({a,b} — {a,b}) =1/2

Acceptance Probability — Example |

e |t directly follows that
a(a — b) = min (1, f(b)/f(a)) = .1111...

ala —a)=alb—a)=a(b—0) =1

Acceptance Probability — Example |

e |t directly follows that
a(a — b) = min (1, f(b)/f(a)) = .1111...

ala —a)=alb—a)=a(b—0) =1

e Recall (simplified) detailed balance

fla)a(a — b) = f(b) a(b — a)

Acceptance Probability - Example Il

o |f /
fa ¢ £<8/9
mutate(z) = { b otherwise

e [hen transition densities are
T({a,b} — a) =8/9

T({a,b} — b)=1/9

Acceptance Probability - Example Il

e Acceptance probabilities are
ala —b)=.9/9=1

alb—a)=.9/9=1
e Better transitions improve acceptance
probability

Acceptance Probability — Goals

e Doesn't affect unbiasedness; just variance

e Maximize the acceptance probability —
— Explore state space better
— Reduce correlation (image artifacts...)

e \Want transitions that are likely to be accepted
— i.e. transitions that head where f(x) is large

Mutations: Metropolis

e I(a—b)=T(0b— a)forall a, b

a(z — 2') = min (1, J;((Z/)))

e Random walk Metropolis

Tx — 2')=T(|lx — 2'|)

Mutations: Independence Sampler

e If we have some pdf p, can sample = ~ p,
e Straightforward transition function:

T(x — 2') = p(x)

o If p(x) = fyar, wouldn't need Metropolis
e But can use pdfs to approximate parts of f...

Mutation Strategies: General

e Adaptive methods: vary transition based on
experience

e Flexibility: base on value of f(x), etc. pretty
freely

e Remember: just need to be able to compute
transition densities for the mutation

e [he more mutations, the merrier

e Relative frequency of them not so important

1D Example

e Consider the function

f1(x):{(:17—.5)2 . 0<z<1

0 : otherwise

e Want to generate samples from f!(x)

1D Mutation #1

mutate; () — &
Ti(x —2) = 1

e Simplest mutation possible
e Random walk Metropolis

1D Mutation #2

mutates(x) — x+.1x% (£ —.5)

1 /
N o_ Jar ¢ le—a<.05
Lz — o) { 0 otherwise

e Also random walk Metropolis

1D Mutation #2

e mutatey increases acceptance probability

a(z — 2') = min (1» J;v((i)) ;Féj : ;))>

e When f(x) is large, will avoid ' when

f(@') < f(z)
e Should try to avoid proposing mutations to
such 2/

1D Results - pdf graphs

o Left: mutate; only
e Right: a mix of the two (10%/90%)
e 10,000 mutations total

Why bother with mutate;, then?

e If we just use the second mutation (£.05)...

Ergodicity

e Need finite prob. of sampling x, f(z) > 0
e This is true with mutates, but is inefficient:

e Still unbiased in the limit...

Ergodicity — Easy Solution

e Periodically pick an entirely new x
e e.g. sample uniformly over €2...

Motion Blur

e Onward to a 3D problem

e Scene radiance function L(u,v,t) (e.g.
evaluated with ray tracing)

e [, = 0 outside the image boundary

e Qs (u,v,t) € |0, Umax| X [0, Vinax] X [0, 1]

Application to Integration

e Given integral, [f(z)g(z)dS
e Standard Monte Carlo estimator:

1 flz)gla)

e where x; ~ p(x), an arbitrary pdf

Application to Integration

N

/ﬂf(w)g(x) 40 ~ %Z f(xi)g(x;)

1 p(xi)

Application to Integration

o1 . f(x)g(a)
[s@a@rao~ >
e Metropolis gives x1,...,xN, ©; ~ fpar(x)

[s@ag@ a0~ |53 gt 1)

o (Recall I(f) = [, f(x)d2)

Image Contribution Function

e The key to applying Metro to image synthesis
I, = / hi(u,v) L(u,v,t)dudvdt
Q

e [; is value of j'th pixel
e /1 is pixel reconstruction filter

Image Contribution Function

e So if we sample z; ~ Lg¢

N

I~ %Z hiz:) - (/QL(:E) dQ) |

1=1

e [he distribution of x; on the image plane

forms the image
e Estimate [, L(x)df2 with standard MC

Two Basic Mutations

e Pick completely new (u,v,t) value
e Perturb u and v £8 pixels, time 4.01.
e Both are symmetric, Random-walk Metropolis

Motion Blur — Result

e Left: Distribution RT, stratified sampling
e Right: Metropolis sampling
e Same total number of samples

otion Blur — Parameter Studies

o Left: 80 pixels, .5 time. Many rejections.
e Right: 0.5 pixels, £.001 time. Didn't
explore €2 well.

Exponential Distribution

e Vary the scale of proposed mutations
= Tpax e—IOg(TmaX/TminK, H = 27-‘-6

(du,dv) = (rsinf, r cos8)
dt = tmaX e—IOg(tmaX/ tmin)§

e Will reject when too big, still try wide variety

Exponential distribution results

Light Transport

e Image contribution function was key
e f(x) over infinite space of paths

e State-space is
scene—from lig
e Robustness is
transport prob

light-carrying paths through the
nt source to sensor
particularly nice—solve difficult

ems efficiently

e Few specialized parameters to set

Light Transport — Setting

e Samples x from () are sequences vyv; . . . vy,
k > 1, of vertices on scene surfaces

x1

AN 303
X2

e f(x) is the product of emitted light, BRDF
values, cosines, etc.

Light Transport — Strategy

e Explore the infinite-dimensional path space
e Metropolis's natural focus on areas of high
contribution makes it efficient
e New issues:
— Stratifying over pixels
— Perceptual issues
— Spectral issues
— Direct lighting

Bidirectional Mutation

e Delete a subpath from the current path
e Generate a new one
e Connect things with shadow rays

4 4

v6 /v6 v5'
5 [
V5 \4 v4
v4 vl vl vl
vO v0 v3'4 v0
\NV/ \Nb/ \‘ [{

N7
Natd N et Neatd
v3 zQ% ng zﬁb

v2 v2

e If occluded, then just reject

Bidirectional Mutation

e Very flexible path re-use

e Ensures ergodicity—may discard the entire path

e Inefficient when a very small part of path
space Is Important

e [ransition densities are tricky: need to
consider all possible ways of sampling the path

Caustic Perturbation

e Caustic path: one more more specular surface
hits before diffuse, eye

N\
N -~
- ~
v’ /f ‘\
. "
[I
[y 0
[f)

non-specular
specular

e Slightly shift outgoing direction from light
source, regenerate path

Lens Perturbation

e Similarly perturb outgoing ray from camera
o Keeps image samples from clumping together

Why It Works Weli

e Path Reuse
— Efficiency—paths are built from pieces of old
ones
— (Could be used in stuff like path tracing...)
e | ocal Exploration
— Given important path, incrementally sample
close to it in (2
— When f is small over much of €2, this is
extra helpful

Conclusion

e A very different way of thinking about
Integration

e Robustness is highly attractive

e Implementation can be tricky

