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Administrivia

® HWI due today
® HW?2 goes out today
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Overview

® Counting and representing rays
® Form factors

® Data structures for light

® Jone reproduction
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Throughput = Measuring Rays

® |nfinitesimal beam of rays defined by two
differential surfaces

..... I-_-_-_
dA;dAs

Measure is the number of rays in the beam.

Quantity is known as throughput
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Throughput

® Can parameterize multiple ways
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Throughput

® Can tilt the surfaces...
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Types of Throughput

® [nfinitesimal beam
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® Differential-finite beam
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® Finite-finite beam
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Conservation of Throughput

® Rays are conserved through free space
° No attenuation or scattering

® n“times throughput remains constant
® Reflection
® Refraction
® Continuously varying i.o.r.

® Thence, conservation of radiance

® Power is conserved
® Throughput is conserved
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Differential Form Factor

® Probability of ray leaving dA hitting A
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Form Factor

® Probability of ray leaving A hitting A’
T(A A)

//COSHCOS@ ) dA(z) @

Pr(A|A) =

What is the ff.from A’ to A in
terms of this one!
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Parameterizing Rays

® How many dimensions?
® |ine segments: 6D
® Rays: 5D
® Rays in free-space: 4D

® Parameterizations

® Plane x directions
® Sphere x directions
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Projected Solid Angle
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Data Structures for Light

® Spherical light field 5
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Data Structures for Light

® Two plane parameterization
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Data Structures for Light

® Environment maps
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Hemispherical Irradiance
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Irradiance Environment Maps
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Tone Mapping

® Computer displays: ~|-100 nits
® Real scenes:
600,000 sun at horizon

8,000 clear sky

100-1000 typical office
|-10 street lighting

0.25 cloudy moonlight

/ V(M) L(\)dA
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Approaches to Tone Mapping

® Spatially uniform vs spatially varying?
® Doesn’t need to be monotonic

® Preserving just noticeable differences
(JNDs)

AY (Y,) = 0.0594 x (1.219 4 Y.04)5

® Histogram methods
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Approaches to Tone Mapping

® How to compute adaptation luminance!
Average

log average

spatially varying: uniform radius

spatially varying: varying radius
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Tone Mapping

® Uniform radius for adaptation luminance
gives halo artifacts
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Tone Mapping

® Computing radius based on local contrast
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Tone Mapping

® Demos...
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