
cs348b
Matt Pharr

Ray Tracing II:
Acceleration
Techniques

cs348b Matt Pharr, Spring 2003

• Various ray-object intersection details

• Ray-object intersection a substantial
computational cost
• 50-90% of run time, depending on shading

complexity

• Spatial subdivision, bounding volume
hierarchies

Overview

cs348b Matt Pharr, Spring 2003

• Object transformations
• Transform the ray origin and direction by the

inverse transform

• Transform the object if possible, though

• Normalize ray direction vector?
• Can make intersection tests faster, but

renormalizing after transform is slow

• Comparing ray t values easier if not re-
normalized after transform!

Ray-object details

cs348b Matt Pharr, Spring 2003

• Intersect(): general rays

• IntersectP(): shadow rays: no geom. info

• WorldBound(): world space bounding box

• ObjectBound(): object space bbox

• CanIntersect(): can we call Intersect()?

• Refine(): new shapes

Shape Intersection Interface

cs348b Matt Pharr, Spring 2003

• Shape-independent method for
representing intersection information
• Point P

• Normal N

• Parametric (u,v)

• Partial derivatives

• (Tangents, change in normal, ...)

Local Differential Geometry

cs348b Matt Pharr, Spring 2003

• Problem: naive algorithm scales linearly
with scene complexity

• Solution: don’t use the naive algorithm!

• Four main options
• Faster ray-object intersections

• Fewer ray-object intersections

• Fewer rays

• Generalized rays

Ray Intersection Acceleration

cs348b Matt Pharr, Spring 2003

• Micro-optimization techniques
• SSE/4 rays at once via SIMD (Wald et al)

• maxt to quickly cull objects

• Shadow rays don’t need differential
geometry

Faster Ray-Object Intersections

cs348b Matt Pharr, Spring 2003

• Beams, cones, pencils, ...

• Area sampling rather than point sampling

• Geometric computations are tricky

• Problems with refraction, ...

Tracing Generalized Rays

cs348b Matt Pharr, Spring 2003

• Shadow rays are special: any intersection
will do
• Stop after first hit

• Shadow cache

• Light buffer

• Shaft culling

• Backface culling

• Bounding volumes

Fewer Ray-Object Intersections

cs348b Matt Pharr, Spring 2003

• Surround object with a simple volume

• Test ray against volume first

• Cost model:

• is given; minimize and

• Spheres, boxes...

• Test object-space or world-space bound?

Basic Bounding Volumes

n× cb + pi × n× co

n cb pi

cs348b Matt Pharr, Spring 2003

• 3+D data structure
• Two main approaches

• Spatial Subdivision

• Bounding Volume Hierarchies

• Does the hierarchy drive the subdivision of
space, or do the bounds of the objects drive it?

Spatial Data Structures

cs348b Matt Pharr, Spring 2003

• Find bounding box

• Choose # of voxels:

• Engrid objects
• Use bounds to find candidate voxels

• Possibly do voxel-object overlap test

Uniform Grids: Creation

k × 3
√

n

cs348b Matt Pharr, Spring 2003

• Intersect ray with grid bounds

• Use DDA to step through voxels
• Like Bresenham, but must visit all voxels the ray

passes through!

• Compute intersections with objects in each
voxel

Uniform Grids: Traversal

cs348b Matt Pharr, Spring 2003

• Continue until intersection in current voxel
• Early out for shadow rays, though

• Mailboxes to eliminate redundant
intersection tests
• Assign rays numbers, check against objects last-

tested-ray number

• Not so good for multi-threading...

Objects that overlap multiple
voxels

cs348b Matt Pharr, Spring 2003

• Solves the lack-of-adaptivity problem

• Can re-use DDA setup computations

• Effective in practice

Hierarchical Grids

cs348b Matt Pharr, Spring 2003

• Recursive subdivision of space
• Octree, kd-tree, bsp-tree

• 1-1 Relationship between points in the scene
and leaf nodes of the tree

• Example: point location by recursive search
(log time)

Hierarchical Spatial Subdivision

cs348b Matt Pharr, Spring 2003

• Top down versus bottom up

• Top down:

Creating Spatial Hierarchies

Create(node, prims) {
 if (# prims < MAX_PRIMS ||
 depth > MAX_DEPTH)
 add(prims, node->prims);
 else {
 refine(node);
 foreach node->child
 Create(child, overlap(prims, child));
 }
}

cs348b Matt Pharr, Spring 2003

• Recursive traversal from top node

• Maintain front-to-back todo list

• Examples...

Traversing Spatial Hierarchies

cs348b Matt Pharr, Spring 2003

• Bounding volume hierarchies
• Kay-Kajiya: heap based on t distance to bounding

volume intersection

• 5D ray hierarchies

• Meta-hierarchies

Other Approaches

cs348b Matt Pharr, Spring 2003

• Every method has been conclusively proven
to be better than all of the others.

• SPD scenes popular, though dated

• V. Havran, Best Efficiency Scheme Project
http://sgi.felk.cvut.cz/BES/

So What’s Best?

cs348b Matt Pharr, Spring 2003

• What kinds of scenes do you want to
render?
• “Teapot in a stadium” versus uniform

distribution

• Impact of tessellation of patches/subdivision
surfaces on distribution?

• Constant factors are critically important

• Adaptivity generally key for robustness

• Cache effects becoming more important

Really, What’s Best?

cs348b Matt Pharr, Spring 2003

• Triangles (Pellegrini)
• Time:

• Space:

• Spheres (Guibas and Pellegrini)
• Time:

• Space:

• In practice, log-ish behavior generally seen

Asymptotic Running Time

O(log n)

O(n5+ε)

O(n5+ε)
O(log2 n)

