Chapter 10
Bidirectional Path Tracing

In thischapter, we describe anew light transport algorithm called bidirectional path tracing.
Thisagorithmisadirect combination of theideasin thelast two chapters: namely, express-
ing light transport as an integration problem, and then applying more than one importance
sampling technique to evaluate it. The resulting algorithm handles arbitrary geometry and
materias, is relatively simple to implement, and can handle indirect lighting problems far
more efficiently and robustly than ordinary path tracing.

To sample each transport path, we generate one subpath starting from alight source, a
second subpath starting from the eye, and join them together. By varying the number of ver-
tices generated from each side, we obtain afamily of sampling techniques for paths of all
lengths. Each sampling technique has a different probability distribution over the space of
paths, and takes into account a different subset of the factors of the integrand (i.e. the mea-
surement contribution function). Samples from all of these techniques are then combined
using multiple importance sampling.

This chapter is organized as follows. We start in Section 10.1 with an overview of the
bidirectional path tracing algorithm. Thisisfollowed by a more detailed mathematical de-
scription in Section 10.2, where we derive explicit formulas for the sample contributions.
Section 10.3 then discusses the issues that arise when implementing the algorithm, includ-
ing how to generate the subpaths and evaluate their contributions efficiently, how to handle
specular materials, and how to implement the important specia cases where the light or
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298 CHAPTER 10. BIDIRECTIONAL PATH TRACING

eye subpath contains less than two vertices. In Section 10.4 we describe an important op-
timization to reduce the number of visibility tests, using a new technique called efficiency-
optimized Russian roulette. Section 10.5 then presents some results and measurements of
the algorithm, Section 10.6 compares our algorithm to other related work in this area, and
Section 10.7 summarizes our conclusions.

10.1 Overview

Recall that according to the path integral framework of Chapter 8, each measurement can
be written in the form

L= [ £@)du(@), (10.1)

wherez = xq . . . x; isapath, €2 isthe set of such paths (of any length), 1. isthe area-product
measure du(z) = dA(xo) --- dA(xy), and f; isthe measurement contribution function

[i(Z) = Le(xo—x1)G(x04>x1) W9 (%1 —Xy)
k—1
I Sxici = xi = xi1) G(Xi 6 Xi41) - (10.2)

=1

Bidirectional path tracing consists of a family of different importance sampling tech-
niques for this integral. Each technique samples a path by connecting two independently
generated pieces, one starting from the light sources, and the other from the eye. For exam-
ple, in Figure 10.1 the light subpath xyx; is constructed by choosing arandom point x, on
alight source, followed by casting aray in arandom direction to find x;. The eye subpath
X9X3X,4 1S constructed by a similar process starting from a random point x4 on the camera
lens. A complete transport path isformed by concatenating these two pieces. (Notethat the
integrand may be zero on this path, e.g. if x; and x, are not mutually visible.)

By varying the number of vertices in the light and eye subpaths, we obtain a family of
sampling techniques. Each technique generates paths of a specific length £, by randomly
generating a light subpath with s vertices, randomly generating an eye subpath with ¢ ver-
tices, and concatenating them (where k = s + ¢ — 1). It isimportant to note that there is
more than one sampling technique for each path length: in fact, for a given length k& it is
easy to seethat there are k£ + 2 different sampling techniques (by lettings = 0,..., k + 1).
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Figure 10.1: A transport path from alight source to the cameralens, created by concatenat-
ing two separately generated pieces.
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Figure 10.2: The four bidirectional sampling techniques for paths of length & = 2. In-
tuitively, they can be described as (a) Monte Carlo path tracing with no special handling
of light sources, (b) Monte Carlo path tracing with a direct lighting calculation, (c) tracing
photons from the light sources and recording an image sample whenever aphoton hitsavis-
ible surface, and (d) tracing photons and recording an image sample only when photons hit
the camera lens. Note that technique (a) can only be used with an area light source, while
technique (d) can only be used with a finite-aperture lens.

These techniques generate different probability distributions on the space of paths,
which makes them useful for sampling different kinds of effects. For example, although
technique (b) works well under most circumstances (for paths of length two), technique (a)
can be superior if the table is very glossy or specular. Similarly, techniques (c) or (d) can
have the lowest variance if the light source is highly directional.



300 CHAPTER 10. BIDIRECTIONAL PATH TRACING

Figure 10.2 illustrates the four bidirectional sampling techniquesfor paths of length £ = 2.

The reason that these techniques are useful is that they correspond to different density
functions p, , on the space of paths. All of these density functions are good candidates for
importance sampling, because they take into account different factors of the measurement
contribution function f; (aswewill explain below). In practical terms, this meansthat each
technique can efficiently sample adifferent set of lighting effects.

To take advantage of this, bidirectional path tracing generates samples using al of the
techniques p, , and combines them using multiple importance sampling. Specifically, the
following estimate is computed for each measurement /;:

= D D> Wea(Tsy) ;J(L_t) (10.3)

Here z,, isapath generated according to the density function p, ;, and the weighting func-
tions w, ; represent the combination strategy being used (which is assumed to be one of the
provably good strategies in Chapter 9, such as the balance heuristic). By combining sam-
plesfrom all the bidirectional techniquesin thisway, awide variety of scenes and lighting
effects can be handled well.

Efficiently generating the samples. So far, we have assumed that al the paths z, ; are
sampled independently, by generating a separate light and eye subpath for each one. How-
ever, in practice it isimportant to make the sampling more efficient. Thisis achieved by
generating the samples in groups. For each group, we first generate a light subpath

3@---3%L—1

with n;, vertices, and an eye subpath
Zpng,—1---29

withn g vertices (wherey, isapoint on alight source, and z, is apoint on the cameralens).
Thelength of each subpath isdetermined randomly, by defining aprobability for terminating
the subpath at each vertex (details are given in Section 10.3.3). We can then take samples
from a whole group of techniques p,; a once, by simply joining each prefix of the light
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subpath to each suffix of the eye subpath. The sample from p, , istaken to be

.’1_35’15 = Y.---Ys-1%4t—1-...-2Z9p,

whichisapath with s+t verticesand k = s+t —1 edges(where0 < s < n;,0 <t < ng,
and k£ > 1). The verticesy,_; and z;_, are called the connecting vertices, and the edge
between them is the connecting edge.

The contributions of all the samples z, ; are then computed and summed according to
the multi-sample estimator (10.3). In order to evaluate the contribution of each path, the
visibility of the connecting edge must be tested (except when s = 0 or ¢t = 0). If the con-
necting edge is obstructed, or if the BSDF at either connecting vertex does not scatter any
light toward the other, then the contribution for that path is zero. (The following section
givesfurther details.)

There is an important detail that we have not mentioned yet. Notice that we have mod-
eled the multi-sample estimator (10.3) as a sum over an infinite number of samples, one
from each bidirectional technique p, ;. We did this because of the way that multipleimpor-
tance sampling was defined: it assumesthat an integer number of samplesn , istaken from
each sampling technique, soin thiscasewe set n,, = 1 for al s,¢. (Note that if we placed
an upper bound on the allowable values of s and ¢, the result would be biased.) Of course,
the strategy above does not take a sample from all of the techniquesp, ;, since there are an
infinite number of them. However, notice that thereisaways somefinite probability of tak-
ing a sample from each technique, no matter how large s and ¢ are. Thisis because for any
given values of s and ¢, there is some probability of generating alight subpathwithn; > s
and an eye subpath with n; > t (since there lengths are chosen randomly).

Formally, we can show how this correspondsto the multi-samplemodel asfollows. First
we introduce the notion of an empty path ¢, which is defined to have a contribution of zero.
We then re-interpret the strategy above to be method for sampling all of the techniquesp, ,
simultaneously, by defining the sasmplefrom p, ; tobe z, , = e whenever s > n, ort > ng.
In other words, athough the estimator (10.3) isformally a combination of samplesfrom an
infinite number of techniques, infact al but afinite number of them will be the empty path e
on each evaluation, so that their contributions can be ignored. Another way of interpreting
thisisto say that the density functions p, ; are allowed to integrate to less than one, since
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any remaining probability can be assigned to the empty path. (Noticethat having aninfinite
number of sampling techniques does not cause any problems when computing the weights
ws +(T54), Since there are only k& + 2 sampling techniques that can generate paths of any
given length £.)

10.2 Mathematical formulation

In this section we derive the formulas for determining the contribution of each sample, and
we show how to organize the calculations so that they can be done efficiently.

Letting z, , be the sample from technique p, ., we must evaluate its contribution

_ f Zs
Cs,t = ws,t<xs,t)]<7_’t)
ps,t<xs,t)

to the estimator (10.3), which can be rewritten as

F=YY0C,

s>0 t>0

We will evaluate this contribution in several stages. First, we define the unweighted contri-
bution C7} , as

We will show how to write this as a product
Cii = alecsiaf,

wherethe factor o dependsonly on thelight subpath, o depends only on the eye subpath,
and ¢, ; depends only on the connecting edge y,_1z;—_;. Theweighted contribution then has
the form

Csi = wsy C:,t )

where w, ; depends on the probabilities with which al the other sampling techniques gen-
erate the given path z, ;.
We now discuss how to compute these factors in detail.
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Thedensity ps ;. We start by showing how to compute the probability density

ps,t = ps,t(i‘s,t)

with which the path z,; was generated. As previously discussed in Chapter 8.2, this is
simply the product of the densities P4(x;) with which theindividual vertices are generated
(measured with respect to surface area). The vertex y; is chosen directly on the surface of
alight source, so that P4(ys) can be computed directly (and similarly for z).

Theremaining verticesy; are chosen by sampling adirection and casting aray from the
current subpath endpoint y; ;. Welet P.(y; 1 — y;) denote the density for choosing the
direction from y;_; to y;, measured with respect to projected solid angle.! Now the density
Py (y;) for choosing vertex y; issimply

Pi(y;) = Pr(yi-1—=¥) G(yic1 W)

recalling that
|cos(f,) cos(6!)]

[Ix — x|

Gx+x) = V(xex)

(see Section 8.2.2.2 for further details).
We define symbolsp; and pf to represent the probabilitiesfor generating thefirst ; ver-
tices of the light and eye subpaths respectively. These are defined by

g = 1,

pf = PA(YO)’

pi = Pi(Yico—Yie1) G(¥ic2 & ¥ie1) Piy fori > 2,
and similarly

pg = 1,

pr = Pa(zo),

sz = PUJ-<Z'L'—2_)Z'£—1)G(Z'L’—QHZi—l)piE_l fOHZQ

"More precisely, it should be written as P (yi—1 = ¥i | ¥i—2,¥i—1), Since the probability is conditional
on the locations of the previoustwo vertices in the subpath.
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Using these symbols, the density for generating thepath Z,; = yp...¥s—12Z¢—1...%0 IS
simply
Pst(Tsp) = Py oy (10.4)

The unweighted contribution C;,. Next, we consider the unweighted contribution
Ccr, = M . (10.5)
’ ps,t(ms,t)

To calculate this quantity efficiently, we precompute the weights .} and o;” given below.
These weights consist of all the factors of the definition (10.5) that can be computed using
thefirst 7 vertices of the light and eye subpaths respectively. Specifically, we have

af = 1,
Oéf = Lg))(XO) )
Pi(yo)
s\Yi-3 7 Yi—2 7 Yi— .
af = Jo(ics = ¥ia i) ar, fori>2, (10.6)
P (Yice = ¥i1)
and similarly
ap = 1,
(0% = m(O)(ZO)
of = fo(7i1 272 7i o) af, fori>2. (10.7)

PO_L (Zi_g — Zi—l)

Here we have used the conventions previously described in Section 8.3.2: the emitted radi-
anceis split into a product

L. <YO — Y1) = Lgo) (YO) Lél) (YO — Y1) )

where LY and LY representsthe spatial and directional componentsof L. respectively, and
wedefine f,(y.1 —yo—y1) = LY (yo—y1). ThequantitiesWe® and f,(z; —2zo—z_) =
W.") are defined similarly. The purpose of this convention isto reducethe number of special
cases that need to be considered, by interpreting the directional component of emission as
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aBSDF. Also, notice that the geometry factors G(x < x’) do not appear in the formulas
for o} and o, because these factors occur in both the numerator and denominator of (10.5)
(see the definitions of p* and p?).

As mentioned above, the unweighted contribution can now be computed as

Ci, = ajcgpaf, (10.8)

where ¢, ; consists of the remaining factors of the integrand f; that are not included in the
precomputed weights. Examining the definitions of f;, o/, and «F, we obtain

cor = Le (Zt—l — Zt—2) )
cs,O = M(YS—Q_)ys—l) ) and
Cst = (V2= 1—=21) G(Ys1 9 201) fs(Voo1 =21 124 2)

fors,t > 0.

Note that the factor G (y,—_1 <+ z;—1) includes avisibility test (for the case s, ¢ > 0), which
isthe most expensive aspect of the evaluation.

The weighting function w,¢. Finally we consider how to evaluate
ws,t = ws,t<js,t) ’

whose value depends on the probability densities with which z is generated by al of the
s+t + 1 possible sampling techniques for paths of thislength. We define p; asthe density
for generating z, ; using alight subpath with : vertices, and an eye subpath with s + ¢ — i
vertices:

Pi = Di(s+t)—i(Tst) fori=0,...,s+1.

In particular, p, isthe probability with which the given path was actually generated, while
Po---Ps—1 @dpsiq...psy represent al the other ways that this path could have been gen-
erated.

Theeva uation of the p; can besimplified by observing that their values only matter up to
an overall scalefactor. For example, if the samples are combined using the power heuristic
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with § = 2, we must compute

P 1
Ws .t -

e Yir? Yilpi/ps)?

Thesameistruefor all the other combination strategies of Chapter 9. Thuswe can arbitrar-

ily set p, = 1, and compute the values of the other p; relative to p;.

To do this, we consider theratio p; 1 /p;. It will be convenient to ignore the distinction
between vertices in the light and eye subpaths, and to write the path z, , as

r = Xp...Xg

wherek = s+t —1. Inthisnotation, the only difference between p; and p; 1 liesin how the
vertex x; isgenerated: for p;, it is generated as part of the eye subpath x; . . . x;, while for
piy1 itisgenerated as part of thelight subpath x, . . . x;. All other verticesof = are generated
with the same probability by both techniques. Thus, theratio of p;,; top; is

]2 _ PA<X0)
Po PO_L<X1 —)Xo) G(Xl (—)X()) ’
i P.(x;_ i) G(xi— i .
it P (i =) Glxig X)) for0<i<k, (10.9)
D P. (Xit1—=%;) G(Xiq1 %)
Prtr _ P. (X1 —=Xp) G(Xp—1 4> Xp)
Dk Py (xx)

This equation can be applied repeatedly starting with p, to find pgy1, . . ., pry1. Similarly,
the reciprocal ratio p; /p;11 can be used to compute p; 1, .. ., po.

Oncethe p; have been calculated, it is straightforward to compute w; , according to the
combination strategy being used. The final weighted sample contribution is then

Cs,t = ws,t C:jt
= Wsp O{‘f Cst OétE .
Note that the samples in each group are dependent (since they are al generated from the

same light and eye subpath). However this does not significantly affect the results, since
the correlation between them goesto zero asweincrease the number of independent sample
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groups for each measurement. For example, if NV independent light and eye subpaths are
used, then al of the samples from each p, , are independent, and each sample from p, ; is
correlated with only one of the N samples from any other given technique p, . From this
fact it is easy to show that the variance results of Chapter 9 are not affected by more than a
factor of (V. — 1)/N due to the correlation between samplesin each group.

10.3 Implementation issues

This section describes several aspects of our implementation. We start by explaining how
the image is sampled and filtered. Next we describe how the light and eye subpaths are
generated. Thisincludesasummary of the information that is precomputed and stored with
each subpath (in order to evaluate the sample contributions more efficiently), and the meth-
ods used to determine the length of each subpath. Following this, we describe how to im-
plement the important special cases where the light or eye subpath has at most one vertex.
Finally, we consider how to handle specular surfaces correctly, and we consider several sit-
uations where the weighting functions w; , cannot be computed exactly (so that approxima-
tions must be used).

10.3.1 Image sampling and filtering

So far, our discussion of bidirectiona path tracing could be applied to any kind of mea
surements ;. Here we discuss the special issues that arise when computing an image (as
opposed to some other set of measurements).

Overal, theimage sampling of bidirectional path tracing issimilar to ray tracing or path
tracing. The camera and lens model determine a mapping from rays in world space onto
the image plane. This mapping is used to define an image function I such that I(u,v) is
proportiona to theirradiance on the image plane at the point (u, v).? Each pixel value I; is

2Strictly speaking, the units of I (u,v) are sensor response per unit area [S - m ~2] rather than irradiance.
(When I(u,v) isintegrated, the resulting pixel values have units of sensor response [S] rather than power.)
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then defined as a weighted average

I, = //Dhj(u,v)l(u,v)dudv,

where D is the image region, and & is the filter function for pixel j (which integrates to
one). In genera, thefilter functionsare all translated copies of one another, and each oneis
zero except on asmall subset of D.

To estimate the values of dl the pixels I, ..., I, alarge number of sample points are
chosen across the image region. We do this by taking a fixed number of stratified samples
per pixel (e.g. to take n = 25 samples, the nominal rectangle corresponding to each pixel
would be subdivided into a5 by 5 grid). Each sample can contribute to the value of severa
pixels, since the filter functions ; generally overlap one another. Specifically, the pixel
values are estimated using®

S hy(ui, vi) I(us, vi)
iz hy(ui, vs)

where N = nM isthetotal number of samples. This equation can be evaluated efficiently

(10.11)

by storing the current value of the numerator and denominator of (10.11) at each pixel, and
accumulating samples as they are taken. Note that each sample (u;, v;) contributes to only
afew nearby pixels (because of thefilter functions /), and that it is not necessary to store
the samples themselves.

10.3.2 Estimation of theimage function

Theimage function I (u, v) is estimated using bidirectional path tracing. Theinitial vertex
of thelight subpath is chosen according to the emitted power at each surface point, whilethe
remaining vertices are chosen by sampling from the BSDF (or some convenient approxima:
tion). Sampling the camera lensis dlightly trickier: the vertex z, can be chosen anywhere

3Note that this estimate is slightly biased. The corresponding unbiased estimate is simply
I = E[(D/N) £ hy(ui,v) ui,0)] (10.10)

where|D| istheareaof theimageregion D. However, equation (10.11) typically givesbetter results (asmaller
mean-squared error) because it compensates for random variationsin the sum of the filter weights.
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on the lens surface, but the direction z, — z; isthen uniquely determined by the given point
(u, v) on theimage plane (since thereis only one direction at z, that is mapped to the point
(u, v) by thelens).* Note that the density P, (zo — z;) is determined by the fact that (u, v)
isuniformly distributed over the image region.

After generating the light and eye subpaths, we consider all possible connections be-
tween them as described above. In order to do this efficiently, we cache information about
the vertices in each subpath. The vertex itself is stored in the form of a special Event object
that has methods for sampling and evaluating the BSDF, and for evaluating the probability
withwhichagiven directionissampled (according to abuilt-in sampling strategy associated
with each BSDF). Theverticesy, and z, are also stored in thisform, so that the distribution
of emitted radiance and importance at these vertices can be queried using the same methods.

Other per-vertex information includes the cumulative subpath weights o and o de-
fined above, the geometric factors G(x;_; < x;), and the probability densities P . (x; —
x;—1) and P (x; — x;11) for sampling the adjacent subpath vertices on either side. The
latter three fields are used in equation (10.9) to efficiently evaluate the probabilities p; with
which agiven path is sampled using all the other possible techniques.

When information about the subpathsis cached, then the work required to evaluate the
contributionsC , isminimal (except for thevisibility test, if necessary). Theonly quantities
that need to be evaluated are those associated with the connecting edgey, 1z; ; (sincethis
edge is not part of either subpath).

10.3.3 Determining the subpath lengths

To control the lengths of the light and eye subpaths (n, and n ), we define a probability for
the subpath to be terminated or absorbed after each vertex is generated. We let ¢; denote
the probability that the subpath is continued past vertex x;, while 1 — ¢; is the probability
that the subpath isterminated. Thisis aform of Russian roulette (Chapter 2).

“4For real lensmodels[Kolb et al. 1995], it is difficult to determine the direction zq — z; oncethe point z
has already been chosen, since this requires usto find a chain of specular refractionsthat connects two given
points on opposite side of the lens (i.e. zo and the point (u,v) on the film plane). A better approach in this
caseisto generate zg and zo — z; together, by starting on thefilm plane at (u, v) and tracing aray toward the
exit pupil .
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In our implementation, we set ¢; = 1 for the first few vertices of each subpath, to avoid
any extra variance on short subpaths (which typically make the largest contribution to the
image). After that, ¢; is determined by first sampling a candidate direction x; — x;1, and

then letting
fs(Xi—l —X;— Xi—|—1)

Poj (Xl _>Xz'—|—1)

¢; = min{l,

Y

where P is density function used for sampling the direction x; — x;,1. Notice that if
P (x; —x; 1) isproportional to the BSDF, then g; issimply the albedo of the material, i.e.
the fraction of energy that is scattered rather than absorbed for the given incident direction.

This procedure does not require any modification to the formulas for the sample contri-
butions described in Section 10.2. However, it isimportant to realize that the final proba-
bility density for sampling each direction is now a product:

PUL(Xi—>XH_1) = q; P:L (Xi—)XH_l) .

Thedensity P« (x; —x;41) canintegrateto|essthan one, sincethereisadiscrete probability
associated with terminating the subpath at x;.

10.3.4 Special casesfor short subpaths

Subpathswith lessthan two verticesrequire specia treatment for variousreasons. The most
important issuesare: taking advantage of direct lighting cal culations when the light subpath
hasonly onevertex, and allowing samplesto contributeto any pixel of theimagein the cases
when the eye subpath has zero or one vertices. In addition, the cases when the light or eye
subpath is empty require specia handling since no visibility test is needed.

10.34.1 Zerolight subpath vertices (s = 0)

These samples occur when the eye subpath randomly intersects a light source. For thisto
occur, the light sources must be modeled as part of the scene (so that it is possiblefor aray
to intersect them). We also require the ability to determine whether the current eye sub-
path endpoint z;_; is on alight source, and to evaluate the emitted radiance along the ray
Z,—1 — Z;—. In order to evaluate the combination weight w, ;, we must al'so compute the
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probability densities for generating the point z;_; and the direction z;_; — z;_, by sam-
pling the light sources (in order to compute the densities p; with which the other sampling
techniques generate this path).

The s = 0 sampling technique is very important for the rendering of certain lighting
effects. These include: directly visible light sources; lights that are seen by reflection or
refraction in a specular surface; caustics due to large area light sources; and caustics that
are viewed indirectly through a specular surface.

A nice thing about this sampling technique isthat no visibility test isrequired. Thusits
contributions are cheap to evaluate, compared to the other C ;. In our implementation, we
accumulate these contributions as the eye subpath is being generated.

10.3.4.2 Onelight subpath vertex (s = 1)

This sampling technique connects a given eye subpath z;_; ...z, to a randomly chosen
point on the light sources. Recall that in the basic algorithm, this point is simply the first
vertex yy of the light subpath (which was chosen according to emitted power). However,
the variance of these samples can be greatly reduced by choosing the vertex using specid
direct lighting techniques. That is, we simply ignore the vertex y,, and connect the eye sub-
path to anew vertex yg chosen using a more sophisticated method (such as those described
by Shirley et al. [1996]). This strategy is applied to each eye subpath suffix z;_; . . .z, Sep-
arately, by choosing a different light source vertex for each one.

This optimization is very important for direct illumination (i.e. paths of length two),
sinceit allowsthe samelow-variance lighting techniquesusedin ray tracing to be applied. It
isalso animportant optimization for longer paths; this correspondsto standard path tracing,
where each vertex of the path is connected to a point on the light source. A direct lighting
strategy is essentialy an importance sampling technique that chooses a light source vertex
y& according to how much it contributes to the illuminated point z;_; (or some approxima-
tion of thisdistribution).

This strategy requires some changesin the way that sample contributions are eval uated:

e The unweighted contribution C7 , is computed using the density P (y;') with which
the light vertex y' was chosen. This calculation isidentica to standard path tracing.
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e The evaluation of the combination weight w, , is dightly trickier, because the direct
lighting strategy does not affect the sampling of light subpaths with two or more ver-
tices. Thuswe must eval uate the density with which yg! is sampled according to emit-
ted power; thisis used to compute the probabilities p; for sampling the current path
using the other possible techniques.

e Thedirect lighting strategy also affects the combinationsweightsfor pathswhere s #
1. The correct probabilities p; can be found by computing them as usual, and then
multiplying the density for p; by Pg(x¢) / Pa(xo). Here Ps(x,) is the density for
generating x, according to emitted power, and P,}(x,) is the density for generating
x( using direct lighting for the point x.

It isalso possibleto use adirect lighting strategy that takes more than one sample, e.g.
a strategy that iterates over the light sources taking a few samples from each one. Thisis
equivalent to using more than one sampling technique to generate these paths; the samples
are simply combined as usua according to the rules of multiple importance sampling.

10.3.4.3 Oneeyesubpath vertex (t = 1)

These samplesare generated by connecting each light subpath prefix y; . . . y; 1 tothevertex
zy on the cameralens. These samples are important for rendering caustics (especially those
from small or point light sources), some forms of direct illumination, and a variety of other
lighting effects.

Themainissuewith thistechniqueisthat the samplesit generatescan lieanywhereinthe
image, not just at the current point (u, v). Oneway to handle thisisto discard samples that
do not contribute to the current measurement /;. However, thisis inefficient; much more
information can be obtained by |etting these samples contribute to any pixel of the image.

To implement this, we allocate a separate image to record the contributions of paths
where 0 or 1 vertices are generated from the eye. We call this the light image, as opposed
to the eye image that holds the contributions of paths wheret > 2 eye subpath vertices are
used.

To accumul ate each sample, we first determinethe point (', v') on theimage plane that
corresponds to the ray y,_1 — zo. We then compute the contribution C, ; of this sample as
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usual, and record it at the location (u’,v"). Thisis done by finding all of the pixels whose
filter value h;(u’, v') is non-zero, and updating the pixel values I} of the light image using

I].L — I]L + ]’Lj(UI,’UI) 0371.

Note that the estimate I (u, v) at the current image point is not affected by this calculation.
Also notethat it is not necessary to store the light and eye imagesin memory (although this
iswhat is done in our implementation). The eye image can be sampled and written to disk
in scanline order, while the light image can be handled by repeatedly accumulating a fixed
number of samples in memory, sorting them in scanline order, and merging them with an
image on disk.

When the algorithm has finished, the final estimate for each pixel has the form
I = (IDI/N)Ij + 17,

where | D| is the area of the image region, NV is the total number of bidirectional samples
that were taken, and 1 f isthe estimate for pixel j from the eye image (sampled and filtered
as described in Section 10.3.1). Note that the eye and light images are filtered differently:
the eyeimageisnormalized at each pixel by dividing by the sum of thefilter weights, while
the light image is not (see equations (10.11) and (10.10) respectively). Thusthe final pixel
values of thelight image are determined by the sample density aswell asthe sample val ues,
more samples per pixel correspond to a brighter image.

Note that to evaluate the contribution C; ; of each sample, we must eval uate the impor-
tance emitted from z, toward y,_; (or more precisely, the directional component W.") of the
importance). The function W." is defined so that

/D W, (29, w) do™ (w)

isequal to the fraction of the image region covered by the points (u, v) that are mapped by
thelensto directionsw € D. It isimportant to realize that this function is not uniform for
most lens models in graphics, since pixels near the center of the image correspond to a set
of rays whose projected solid angle is larger than for pixels near the image boundary.
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10.3.4.4 Zeroeyesubpath vertices(t = 0)

These samples occur when the light subpath randomly intersects the camera lens. Because
the camera lens is a relatively small target, these samples do not contribute significantly
for most scenes. On the other hand, these samples are very cheap to evaluate (because no
visibility test is required), and can sometimes make the computation more robust. For ex-
ample, this can be an effective sampling strategy for rendering specular reflections of small
or highly directional light sources.

To implement this method, the lens surface must have a physical representation in the
scene (so that it can be intersected by aray). In particular, this sampling technique cannot
be used for pinhole lens models. Aswith the case for t = 1 eye subpath vertices, samples
can contribute to any pixel of the image. The image point (u’, v') is determined from the
ray y,_» —ys—1, and samples are accumulated and filtered in the light image as before.

10.3.5 Handling specular surfaces

Specular surfaces require careful treatment, because the BSDF and the density functions
used for importance sampling both contain Dirac distributions. Thisis not a problem when
computing the weights «F and «”, since the ratio

fs(Xi—3 —X;—2 —>Xz'—1)
PO'J' (XZ'_Q — Xi—l)

of equation (10.6) is well-defined. Although this ratio cannot be directly evaluated (since
the numerator and denominator both contain a Dirac distribution), it can be returned as a
“weight” when the specular component of the BSDF is sampled.

Similarly, specular surfaces do not cause any problemswhen computing the unweighted
contribution C';, that connects the eye and light subpaths. The specular components of the
BSDF's can simply be ignored when computing the factor

Cst = [s(Vsmo = ¥sm1 = 20—1) G(Ysm1 2 20—1) fs(Ysm1 = 2eo1 = 24—2)

sincethereisazero probability that these BSDF swill have anon-zero specular component
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in the direction of the given connecting edge.®

On the other hand, specular surfaces require careful treatment when computing the
weights w, ; for multiple importance sampling. To compute the densities p; for the other
possible ways of sampling this path, we must evaluate expressions of the form

Di+1 _ PUL(X1—1—>X1‘)G(X¢—1<—>X¢)

10.12
i P. (Xip1 = X;) G(Xi41 < X;) ( )

(see equation (10.9)). In this case the denominator may contain a Dirac distribution that is
not matched by a corresponding factor in the numerator.

We handle this problem by introducing a specular flag for each vertex. If the flag is
true, it means that the BSDF and sampling probabilities at this vertex are represented only
up to an unspecified constant of proportionality. That is, the cached values of the BSDF
fs(xi—1 — x; = x;41) and the probability densities P (x; — x;_1) and P (x; — X;41)
are all considered to be coefficients for a single Dirac distribution § that is shared between
them.® When applying equation (10.12), we use only the coefficients, and simply keep track
of the fact that the corresponding density also contains a Dirac distribution.

Specificaly, consider a path whose connecting edgeisx,_x,. We start with the nomi-
nal probability p, = 1, and compute the relative values of the other p; by applying (10.12)
repeatedly. It is easy to check that a specular vertex at x; causes a Dirac distribution to
appear in the denominator of p,; and p;, S0 that these probabilities are effectively zero.
(Noticethat these densities correspond to the sampling techniques wherex ; isaconnecting
vertex.) However, thesearethe only p; that are affected, sincefor other values of i the Dirac
distributionsin P, (x; —x;_1) and P+ (x; —x;1) are canceled by each other.

The end result is particularly simple: wefirst compute all of the p; exactly as we would
for non-specular vertices, without regard for the fact the some of the densities are actually
coefficientsfor Dirac distributions. Thenfor every vertex wherex ; isspecular, weset p; and

SEvenif the connecting edge happened to have adirection for which one of the BSDF'sis specular (aset of
measure zero), the value of the BSDF isinfinite and cannot be represented as areal number. Thuswe choose
to ignore such paths (by assigning them aweight «; ; = 0), and instead we account for them using one of the
other sampling techniques.

5From another point of view, we can say that BSDF and probability densities are expressed with respect
to a different measure function, one that assigns a positive measure to the discrete direction x;_o —x;_1.
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pj+1 to zero (since these probabilitiesinclude a symbolic Dirac distribution in the denom-
inator). Note that these techniques apply equally well to the case of perfectly anisotropic
reflection, where light from a given direction is scattered into a one-dimensional set of out-
going directions. In this case, the unspecified constant of proportionality associated with
the specular flag is a one-dimensional Dirac distribution.

10.3.6 Approximating the weighting functions

Up until now, we have assumed that the densities p; for sampling the current path using
other techniques can be computed exactly (as required to evaluate the weight w, ;). How-
ever, there are some situation whereit is difficult or impossibleto do this; exampleswill be
given below. In these situations, the solution isto replace the true densities p; with approx-
imations p; when evaluating the weights. Aslong as these approximations are reasonably
good, the optimality properties of the combination strategy being used will not be signifi-
cantly affected. But even if the approximationsare bad, the resultswill at least be unbiased,
since the weighting functions sum to one for any values of the p,;.” We now discussthe rea-
sons that approximations are sometimes necessary.

Adaptive samplingisonereason that the exact densities can be difficult to compute.® For
example, suppose that adaptive sampling is used on the image plane, to take more samples
where the measured variance is high. Inthis case, it isimpossible to compare the densities
for sampling techniques wheret > 2 eye vertices are used to those where ¢ < 1, since
the densitiesfor ¢ > 2 depend on the eventual distribution of samples over theimage plane
(which hasnot yet been determined). A suitable approximation inthiscaseisto assumethat
the density of samplesis uniform across the image.

Similarly there are some direct lighting strategies where approximations are necessary,
because the strategy makes random choices that cannot be determined from the final light
source vertex yg. For example, consider the following strategy [Shirley et al. 1996). First,

"Note that to avoid bias, the unweighted contribution C + ¢+ must always be evaluated exactly; this part of
the calculation is required for any unbiased Monte Carlo agorithm. The evaluation of C;, should never be
a prablem, since all the random choices that were used to generate the current path are explicitly available
(including random choices that are cannot be determined from the resulting path itself).

8Note that adaptive sampling can introduce bias, unless two-stage sampling is used [Kirk & Arvo 1991].
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a candidate vertex x; is generated on each light source S;. Next we compute the contribu-
tion that each vertex x; makesto the illuminated point z; , under the assumption that the
corresponding visibility ray isnot obstructed. Finally, we choose one of the candidates x; at
random according to its contribution, and return it as the light source vertex y&'. The prob-
lemwith thisstrategy isthat given an arbitrary point x on alight source, itisvery difficult to
evaluate the probability density P3(x) with which x is sampled. Thisis because the sam-
pling procedure makes random choices that are not reflected in the final result yg': namely,
the locations of the other candidate points x;, which are generated and then discarded. To
evauate the density exactly would require analytic integration over the all possible loca-
tions of the x;. A suitable approximation in this case is to use the conditional probability
A"(x;]5;), i.e. the density for sampling x; given that the light source S; has already been
chosen.

10.4 Reducingthe number of visibility tests

To make bidirectional path tracing more efficient, it is important to reduce the number of
visibility tests. The basic agorithm assumesthat all of the O(nn) contributionsare eval-
uated; however, typically most of these contributionsare so small that avisibility test is not
justified. In this section, we develop a new technique called efficiency-optimized Russian
roulette that is an effective solution to this problem. We start with an introduction to ordi-
nary Russian roulette and a discussion of its shortcomings. Next, we describe efficiency-
optimized Russian roul ette as a general technique. Finally we describe the issues that arise
when applying this technique to bidirectiona path tracing.

We consider the following abstract version of the visibility testing problem. Suppose
that we must repeatedly evaluate an estimator of the form

F = Ci++Ch,

wherethe number of contributionsn isarandom variable. We assumethat each contribution
C; can bewritten asthe product of atentative contribution¢;, and avisibility factor v; (which
iseither O or 1).

The number of visibility tests can be reduced using Russian roulette. We define the
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roulette probability ¢; to be the probability of testing the visibility factor v;. Each contri-
bution then has the form

1 0 otherwise.

It iseasy to verify that E[C;] = Efv; t;], i.e. thisestimator is unbiased.

The main question, of course, is how to choose the roulette probabilities ¢;. Typicaly
thisis done by choosing afixed roulette threshold ¢, and defining

¢; = min(1,¢;/9).

Thus contributions larger than § are always evaluated, while smaller contributions are ran-
domly skipped in away that does not cause bias.

This approach is not very satisfying, however, because the threshold ¢ is chosen arbi-
trarily. If the threshold is chosen too high, then there will be a substantial amount of extra
variance (dueto visibility teststhat are randomly skipped), whileif the threshold istoo low,
then many unnecessary visibility testswill be performed (leading to computation times that
are longer than necessary). Russian roulette thus involves a tradeoff, where the reduction
in computation time must be balanced against the corresponding increase in variance.

10.4.1 Efficiency-optimized Russian roulette

In this section, we show how to choose the roulette probabilities ¢; so as to maximize the
efficiency of the resulting estimator F'. Recall that efficiency is defined as

1
02T’

where ¢ isthe variance of the given estimator, and 7 is the average computation time re-
quired to evaluateit. We assume the computation timeis simply proportional to the number
of raysthat are cast (n). Note that n includes all types of rays, not just visibility rays; e.g.
for bidirectional path tracing, it includesthe rays that are used to generate the light and eye
subpaths.
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To begin, we consider the effect that ¢; has on the variance and cost of F'. For the vari-
ance, we return to the definition

o — (1/g;) v; t; with probability ¢, ,
t 0 otherwise.

We can treat ¢; as afixed quantity (since we are only interested in the additional variance
relative to the case ¢; = 1), and we can aso assume that v; = 1 (a conservative assump-
tion, sinceif v; = 0 then Russian roul ette does not add any variance at al). The additional
variance due to Russian roul ette can then be written as

ViG] = E[C]]-E[GF
= [Qi ti/@)? + (1- %’)0] -t
= t; (/g —1).

Asfor the cost, it is easy to see that the number of raysisreduced by 1 — ¢; on average.

Next, we examine how this affects the overall efficiency of F. Here we make an im-
portant assumption: namely, that F' is sampled repeatedly, so that estimates of its average
variance o2 and average sample cost n, can be computed. Then according to the discussion
above, the modified efficiency due to ¢; can be estimated as

1

T [ -1] - o (1—q)

The optimal value of ¢; is found by taking the derivative of this expression and setting it

(10.13)

egual to zero. After some manipulation, thisyields

g = t;/\J(03 —1)/(no —1).

Conveniently, this equation has the same form that is usually used for Russian roul ette cal-
culations, where the tentative contribution is compared against a given threshold 4. Since
¢; islimited to the range (0, 1], the optimal value is

¢; = min(1,¢;/0)
where 6 = /(03 —2)/(no —1). (10.14)
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However, this choice of the threshold § has two undesirable properties. First, its value
depends on the current tentative contribution ¢;, so that it must be recalculated for every
sample. Second, there is the possibility that an unusually large sample will have t? > o3,
in which case the formulafor § does not make sense (although by returning to the original
expression (10.13), it iseasy to verify that the optimal choiceinthiscaseisq; = 1).

To avoid these problems, we look for a fixed threshold 6* that has the same transition
point at which ¢; = 1. It iseasy to check that ¢; > 1 if and only if ¢? > o2/no. Thus, the

fixed threshold
0" = \/ 0'3/710

leadsto Russian roul ette being applied to the same set of contributionsasthe original thresh-
old (10.14).° Notice that §* is simply the estimated standard deviation per ray.

Summary. Efficiency-optimized Russian roulette consists of the following steps. Given
an estimator F that is sampled a number of times, we keep track of its average variance o
and average ray count n,. Before each sampleis taken we compute the threshold

8 = y/ad/no,

and apply thisthreshold to all of the individual contributionst; that require avisibility test.
The roulette probability ¢; isgiven by

¢ = min(1,¢/9).

Note that this technique does not maximize efficiency in a precise mathematical sense,
since we have made several assumptionsin our derivation. Rather, it should beinterpreted
as a heuristic that is guided by mathematical analysis; its purpose is to provide theoretical
insight about parameter values that would otherwise be chosen in an ad hoc manner.

9The roulette probabilities will be slightly different for ¢; < 1; it is easy to check that 6* resultsin values
of ¢, that are dlightly larger, by afactor between 1 and y/nq/(ng — 1). Thus, visibility istested dightly more
often using the fixed threshold §* than the original threshold §.



10.4. REDUCING THE NUMBER OF VISIBILITY TESTS 321

10.4.2 Implementation

The main requirement for implementing this technique is that we must be able to estimate
the average variance and cost of each sample (i.e. o3 and n;). Thisis complicated by the
fact that the mean, variance, and sample cost can vary substantially over the image plane.
It is not sufficient to simply compute the variance of all the samples taken so far, since the
average variance of samplesover the whole image plane does not reflect the variance at any
particular pixel. For example, suppose that the left half of the current image is white, and
theright half isblack. The variance at most pixels might well be zero, and yet the estimated
variance will be largeif all theimage samples are combined.

|deally, we would like o2 and n, to estimate the variance and sample cost within the
current pixel. This could be done by taking samplesin random order over the wholeimage
plane, and storing the location and value of each sample. We could then estimate o2 and ny
at agiven point (u, v) by computing the sample variance and average cost of the nearest N
samples.

In our implementation, we use a simpler approach. The image is sampled in scanline
order, and we estimate o2 and n, using the last N, samples (for some fixed value of Nj).
Typically we let Ny be the number of samples per pixel; this ensures that all variance and
cost estimates are made using samples from either the current pixel or the one before. (To
ensure that the previous pixel is always nearby, scanlines are rendered in aternating direc-
tions. Alternatively, the pixels could be traversed according to a space-filling curve.)

The calculation of ¢ and n, can be implemented efficiently as follows. Let n; be the
number of rays cast for the j-th sample, and let F}; beits value. We then smply maintain
partial sumsof n;, F;, and F? for thelast Ny samples, and set the Russian roulette threshold
for the current sampleto

5 T — JzFf—aE/JZg) (ZF)°

wherethe sumsare over themost recent N, samplesonly. (Notethat thevariancecalculation

isnot numerically stablein thisform, but we have not found thisto be aproblem.) It ismost
efficient to update these sums incrementally, by adding the values for the current sample ;
and subtracting the values for sample j — N, For this purpose, thelast IV, vauesof F; and
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n; are kept in an array. We have found the overhead of these calculations to be negligible
compared to ray casting.
An aternative would be to compute a running average of each quantity. Thisis done
using the update formula
S; = ax; + (1—a)S; 1,

where o isasmall real number that determines how quickly the influence of each sample
drops off with time. (This technique is also known as exponential smoothing.)

10.5 Reaults

We have compared bidirectiona path tracing against ordinary path tracing using the test
scene shown in Figure 10.3. The scene contains a floor lamp, a spotlight, a table, and a
large glass egg. Observethat diffuse, glossy, and pure specular surfaces are all present, and
that most of the room isilluminated indirectly.

Figure 10.3(a) was created by sampling pathsup tolength £ = 5 using bidirectional path
tracing, and combining the sampling techniques p, ; using the power heuristic with 8 = 2
(see Chapter 9). Theimage is 500 by 500 with 25 samples per pixel. Observe the caustics
on the table, both directly from the spotlight and indirectly from light reflected on the ceil-
ing. Theunusual caustic pattern to the left is caused by the square shape of the spotlight’s
emitting surface.

For comparison, Figure 10.3(b) was computed using standard path tracing with 56 sam-
plesper pixe (the same computationtimeas Figure 10.3(a)). Each path was generated start-
ing from the eye, and direct lighting cal culations were used to calculate the contribution at
each vertex. Russian roulette was applied to reduce the number of visibility tests. Caus-
ticswere rendered using paths that randomly intersected the light sources themselves, since
these paths would otherwise not be accounted for. (Direct lighting calculations cannot be
used for paths where alight source shines directly on a specular surface.)

Recall that bidirectional path tracing computes a weighted sum of the contributions
made by each sampling technique p,,. Figure 10.4 is a visualization of how much each
of these techniques contributed toward the final image in Figure 10.3(a). Each row r shows
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(a) Bidirectiona path tracing with 25 sam- (b) Standard path tracing with 56 samples per
ples per pixe pixel (the same computation time as (a))

Figure 10.3: A comparison of bidirectional and standard path tracing. The test scene con-
tains a spotlight, afloor lamp, atable, and alarge glass egg. Image (a) was computed with
bidirectional path tracing, using the power heuristic with g = 2 to combine the samples for
each path length. The image is 500 by 500 with 25 samples per pixel. Image (b) was com-
puted using standard path tracing in the same amount of time (using 56 samples per pixel).

the sampling techniques for a particular path length £ = r + 1 (for example, the top row
shows the sampling techniques for paths of length two). The position of each imagein its
row indicates how the paths were generated: the s-th image from the left corresponds to
paths with s light source vertices (and similarly, the ¢-th image from the right of each row
corresponds to paths with ¢ eye subpath vertices). Notice that the complete set of sampling
techniques p, ; is not shown; paths of length £ = 1 are not shown because the light sources
are not directly visible, and paths with zero eye or light subpath vertices are not shown be-
cause these images are virtually black (i.e. their weighted contributions are very small for
this particular scene). Thus, the full set of images (for paths up to length 5) would have
one more image on the left and right side of each row, plus an extrarow of three imageson
the top of the pyramid. (Even though these images are not shown, their contributions are
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included in Figure 10.3(a).)

The main thing to notice about these images is that different sampling techniques ac-
count for different lighting effects in the final image. Thisimpliesthat most paths are sam-
pled much more efficiently by one technique than the others. For example, consider the
image in the middle of the second row of Figure 10.4, corresponding to the sampling tech-
nique ps » (the full-size image is shown in Figure 10.5(a)). These paths were generated by
sampling two vertices starting from the eye, and two vertices starting from a light source.
Overadl, thisimage s brighter than the other imagesin its row, which implies that samples
from this technique make a larger contribution in general. Yet observe that the glass egg
is completely black, and that the inside of the spot light looks at though it were turned off.
Thisimpliesthat the paths responsible for these effects were sampled more efficiently (i.e.
with higher probability) by the other two sampling techniquesin that row.

As paths get longer and more sampling techniques are used, the effects become much
more interesting. For example, consider the rightmost image of the bottom row in Fig-
ure 10.4 (enlarged in Figure 10.5(b)), which correspondsto pathswith fivelight verticesand
one eye vertex (ps ;). Observe the caustics from the spotlight (especially the long “horns’
stretching to the right), which are due to internal reflectionsinside the glass egg. This sam-
pling technique al so captures pathsthat are somehow associ ated with the corners of theroom
(where thereisa1/r? singularity in the integrand), and paths along the silhouette edges of
the floor lamp’s glossy surfaces. Notice that it would be very difficult to take al of these
factors into account if we needed to manually partition paths among the sampling tech-
niques; multiple importance sampling is absolutely essential in order to make bidirectional
path tracing work well.

It is also interesting to observe that the middle images of each row in Figure 10.4 are
brighter than therest. Thisimpliesthat for the majority of paths, the best sampling strategy
isto generate an equal number of vertices from both sides. This can be understood in terms
of the diffusing properties of light scattering, i.e. the fact that although the emitted radiance
IS quite concentrated, each scattering step spreads the energy more evenly throughout the
scene. The same can be said for the emitted importance function; thus by taking several
steps from the light sources and the eye, we have abigger “target” when attempting to con-
nect the two subpaths.
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Figure 10.4: Thisfigures shows the weighted contribution that each bidirectional sampling
technique p, ; makesto Figure 10.3(a). Each row r shows the contributions of the sampling
techniques for a particular path length & = r + 1. The position of each image in its row
indicates how the paths were generated: the s-th image from the left in each row uses s
light subpath vertices, while the ¢-th image from the right uses ¢ eye subpath vertices. (For
example, thetop right imageuses s = 2 light verticesand ¢t = 1 eyevertex, whilethe bottom
leftimage uses s = 1 light vertex and ¢t = 5 eye vertices.) Note that these images have been
over-exposed so that their details can be seen; specifically, the images in row r were over-
exposed by r f-stops. The images were made by simply recording the contributions C ; in
adifferent image for each value of s and t.
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(a) Two light vertices, two eye vertices (p2,2). (b) Five light vertices, one eye vertex (ps 1).

Figure 10.5: These are full-size images showing the weighted contributions to Fig-
ure 10.3(a) that are due to samples from two particular techniques (p2 2 and ps ;). These
are enlarged versions of the images in Figure 10.4, where p- » is the middle image of the
second row, and ps 1 isthe rightmost image of the bottom row.

10.6 Comparison with related work

A similar bidirectional path tracing algorithm has been described independently by Lafor-
tune & Willems [1993, 1994]. This section compares the two frameworks in detail, and
discusses some possible extensions of the algorithms.

Themaost important difference between our algorithm and L afortune’ sisthat the samples
are combined using a provably good strategy. This requires a substantially different theo-
retical basis for the algorithm, in order that multiple importance sampling can be applied.
In particular, the path integral formulation of Chapter 8 makes two essential steps: it ex-
presses light transport in the form of an integration problem, and it provides a well-defined
basisfor comparing the probabilitieswith which different sampling techniques generate the
same path. On the other hand, Lafortune formulates bidirectional path tracing asarecursive
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evaluation of theglobal reflectance distribution function (GRDF).*° Thisiscertainly avalid
theoretical basisfor bidirectiona path tracing; however, it does not express the problemin
the form needed for multiple importance sampling.

Another difference isthat our framework includes several important estimatorsthat are
missing from Lafortune's. These include the estimators where zero or one vertices are gen-
erated from the eye, and also the naive path tracing estimator where zero vertices are gener-
ated from the light source. These estimators are very important for generating caustics and
other “difficult” transport paths, and help to make the calculations more robust. We have
found that the estimator with one eye vertex (¢ = 1) issurprisingly useful for low-variance
rendering in general (itisessentially aparticletracing techniquewhere samplesare recorded
directly in theimage). Also note that although Lafortune describes the estimator with one
light vertex (s = 1), his framework does not allow the use of direct lighting techniques.
This optimization is very important for making bidirectional path tracing competitive with
standard path tracing on “normal” scenes, i.e. those where most surfaces are directly lit.

More generaly, the two frameworks have a different conception of what bidirectional
path tracing is. Lafortune describes it as a specific technique for generating a path from the
eye, a path from the light sources, and connecting al pairs of vertices via shadow rays. On
the other hand, we view bidirectiona path tracing as a family of sampling techniques for
paths. The samples from each technique can be generated in any way desired; the specific
strategy of connecting every prefix of alight subpath to every suffix of an eye subpath is
simply an optimization that allowsthese samplesto be generated moreefficiently. Any other
desired method of generating the paths could be used instead, e.g. by connecting several
different eye subpathsto the same light subpath, or by maintaining a*“pool” of eye and light
subpaths and making random connections between them, or by generating the pathsin more
than two pieces (by sampling one or more pieces starting from the middle).

A minor difference between the two frameworks is that Lafortune assumes that light
sources are sampled according to emitted power, and that materials are sampled according
to the BSDF (exactly). Our formulation of bidirectional path tracing allows the use of ar-
bitrary probability distributionsto choose each vertex. The direct lighting strategy applied

19The“GRDF” issimply anew name for the kernel of the solution operator S defined by equation (4.16).
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to the case s = 1 isasimple example of why thisis useful. Other possibilities include:
selecting certain scene objects for extra sampling (e.g. portals between adjacent rooms, or
small specular objects); using non-local sampling techniques to generate chains of spec-
ular vertices (see Section 8.3.4); or using an approximate radiance/importance solution to
increase the sample densities in bright/important regions of the scene. Bidirectional path
tracing is designed to be used in conjunction with these other sampling techniques, not to
replace them.

Another minor difference isthat our development isin terms of general linear measure-
ments I;, rather being limited to pixel estimates only. This means that bidirectional path
tracing could be used to compute a view-independent solution, where the equilibrium radi-
ance function L isrepresented as alinear combination of basis functions { By, ..., By }.1
Each measurement /; is simply the coefficient of B;, and is defined by

I = (W9, 1)

whereW.”) = B; isthecorresponding dual basisfunction.’? Inthissituation, each “ eye sub-
path” startsfrom asurface of the scenerather than the cameralens. By using afixed number
of eye subpathsfor each basisfunction, we can ensurethat every coefficient receivesat | east
some minimum number of samples. This bidirectiona approach is an unexplored alterna-
tive to particle tracing for view-independent solutions, and may help to solve the problem
of surface patchesthat do not receive enough particles. (Notethat particletracing itself cor-
responds to the case where t = 0, and isincluded as a specia case of this framework.)

Lafortune & Willems [1995b] has described an alternative approach to reducing the
number of visibility tests. His methods are based on standard Russian roulette and do not
attempt to maximize efficiency. We have not made a detailed numerical comparison of the
two approaches.

UTypically this representation is practical only when most surfaces are diffuse, so that the directional de-
pendence of L(x,w) does not need to be represented.

2The dual basis functions satisfy (B;, B;) = 1 wheni = j, and (B;, B;) = 0 otherwise. For example,
when {By, ..., By} isan orthonormal basis, then B]- = B;.
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10.7 Conclusions

Bidirectional path tracing is an effective rendering algorithm for many kinds of indoor
scenes, with or without strong indirect lighting. By using arange of different sampling tech-
niques that take into account different factors of the integrand, it can render awide variety
of lighting effects efficiently and robustly. The algorithm isunbiased, and supportsthe same
range of geometry and materials as standard path tracing.

It is possibleto construct scenes where bidirectional path tracing improves on the vari-
ance of standard path tracing by an arbitrary amount. To do so, it suffices to increase the
intensity of theindirect illumination. In the test case of Figure 10.3, for example, the vari-
ance of path tracing increases dramatically as we reduce the size of the directly illuminated
area on the ceiling, while bidirectional path tracing isrelatively unaffected.

On the other hand, one weakness of the basic bidirectional path tracing algorithm isthat
there is no intelligent sampling of the light sources. For example, if we were to simulate
thelighting in asingle room of alarge building, most of the light subpaths would start on a
light source in aroom far from the portion of the scene being rendered, and thus would not
contribute. This suggests the idea of sampling light sources according to some estimate of
their indirect lighting contribution. Note that methods have already been developed to ac-
celerate thedirect lighting component when there are many lights, for example by recording
information in a spatial subdivision [Shirley et al. 1996]. However, these methods do not
help with choosing theinitia vertex of alight subpath. In general, we would like to choose
alight source that is nearby physicaly, but is not necessarily directly visible to the viewer.

Similarly, bidirectional path tracing is not suitable for outdoor scenes, or for scenes
where the light sources and the viewer are separated by difficult geometry (e.g. a door
dightly gar). In these cases the independently chosen eye and light subpaths will proba
bly not be visible to each other.

Finally, note that bidirectional path tracing can miss the contributions of some paths if
point light sources and perfectly specular surfaces are allowed. (Thisis true of standard
path tracing as well.) For example, the algorithm is not capable of rendering caustics from
a point source, when viewed indirectly through a mirror using a pinhole lens. Thisis be-
cause bidirectiona path tracing is based on local path sampling techniques and thus it is
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will miss the contributions of paths that do not contain two adjacent non-specular vertices
(see Section 8.3.3). However, recall that such paths cannot exist if afinite-aperture lensis
used, or if only arealight sources are used, or if there are no perfectly specular surfacesin
the given scene. Thus bidirectiona path tracing is unbiased for al physically valid scene
models.



