
Chapter 8

A Path Integral Formulation of Light

Transport

In this chapter, we show how to transform the light transport problem into an integration

problem. This path integral formulation expresses each measurement in the form of a sim-

ple integral (rather than as the solution to an integral equation or operator equation, as with

the other formulations we have described). More precisely, each measurement
���

is written

in the form ����� ���
	��
���������� ��������
where � is the set of transport paths of all lengths, � is a measure on this space of paths,

and
	��

is called the measurement contribution function (to be defined below).

The path integral model has several benefits. The main advantage is that by reducing

light transport to an integration problem, it allows general-purpose integration methods to

be applied. For example, we will show how light transport problems can be solved more

robustly using multiple importance sampling (Chapter 9), an integration method that allows

several different sampling strategies to be efficiently combined.

The path integral model also leads to new techniques for sampling paths. The problem

with models based on integral equations is that they only describe scattering from one sur-

face at a time. This leads to light transport algorithms that construct paths incrementally,

by recursive sampling of the integral equation. The path integral model takes a more global
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220 CHAPTER 8. PATH INTEGRAL FORMULATION

view, which has led directly to techniques such as bidirectional path tracing (Chapter 10)

and the Metropolis light transport algorithm (Chapter 11). These new techniques can only

be properly understood within the path integral framework.

Finally, the path integral model is a useful tool for understanding the limitations of un-

biased Monte Carlo algorithms. It provides a natural way to classify transport paths, and to

identify those that cannot be sampled by certain kinds of techniques.

This chapter is organized as follows. First, we review the three-point form of the light

transport equations, and show how to transform them into an integral over paths. We then

discuss the advantages of the path integral model in more detail, and show how it can be

used to construct unbiased Monte Carlo estimators. Finally, introduce the idea of full-path

regular expressions (extending a notation of Heckbert [1990]), and discuss the limitations

of path sampling approaches to light transport.

In Appendix 8.A, we describe several other ways that the path integral model can be for-

mulated, by introducing new measures on the space of paths. These measures have natural

physical interpretations whose meanings are described.

8.1 The three-point form of the transport equations

We show how to rewrite the transport equations to eliminate the directional variables ��� � ��� .
This first step is to write the equilibrium radiance in the form

� ���	�
��� � , where
� � �
�����

are points on the scene surfaces. In terms of the function
� ��� � � � we have been using up

until now, we define � ���	��� � � � � ��� � � �
where � � �� ��� �

is the unit-length vector pointing from
�

to
���

. (This representation

of the ray space � was described in Section 4.1; recall that it has some redundancy, since� ���	���
� � ��� ���	���
� � � whenever
���

and
�
� �

lie in the same direction from
�

.)

Similarly, we write the BSDF as a function of the form

	�� ���	�
� � �
� � � � � 	������ � � ��� � ��� ���
where ��� � �� � � �

and ��� � �� � ��� � �
. The arrow notation

����� �
symbolizes the direction
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Figure 8.1: Geometry for the light transport equation in three-point form.

of light flow.

The three-point form of the light transport equation can now be written as

� ��� � ��� � � � � ������� � ��� � � ��� � � � ���	��� � � 	 � ���	��� � ��� � � ��� ����� � � ���
	 ��� � (8.1)

(see Figure 8.1). This is simply a reformulation of the original version of the light transport

equation (3.19) that we have already described. As before,
�

is the union of all scene sur-

faces, 	 is the area measure on
�

, and
���

is the emitted radiance function. The function
� represents the change of variables from the original integration measure �
�
� to the new

integration measure �
	 , which are related by

�
� � ��� � ��� � � �
� � ��� � �� � � � � � � ����� � � ���
	 ��� ��� (8.2)

where
� ����� � � � � � ����� � � � � ����� ��� � � ����� ��� �� � �� � � � � ��� � (8.3)

Here
� � and

� �� are the angles between the segment
��� ���

and the surface normals at
�

and� �
respectively, while

� ����� � � � �! 
if
�

and
� �

are mutually visible and is zero otherwise.

We also use the change of variables (8.2) to rewrite the original measurement equation

(3.18) as

� � � � �#"$�!%!& ')(� ���	�
� � � � ���	��� � ��� ����� � � ���
	 ��� ���
	 ��� � ��� (8.4)
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where as usual, the notation
� � ���

indicates the direction of light flow. In particular,

% & ' (� ��� � �
� � represents the importance that is emitted from
���

toward
�

(opposite to the

arrow notation). This is, we define % & ')(� ���	���
� � � % & ' (� ���
� � � � , where � � �� � � �
.1

8.2 The path integral formulation

In this section, we first define the components of the path integral formulation: the integra-

tion domain, measure, and integrand. Next, we discuss the advantages of this formulation.

Finally, we show how to use the path integral framework in Monte Carlo algorithms, and in

particular how to calculate the probability densities with which paths are sampled.

Recall that our goal is to express each measurement in the form

����� � �
	��
���������� ������ � (8.5)

To do this, let � � represent the paths of length
�
, i.e. the set of paths of the form

�� � ��� ��� ��� � � � �
where

 �� �
	��
and

��
�� �
for each � . We define a measure � � on this set of paths,

called the area-product measure, according to

� � ��� � � ��� �
	 ����� ������� �
	 ��� � ���
where

��� � � is a set of paths. Formally, � � is a product measure [Halmos 1950]; we could

also have written its definition as

��� � ����� � � � � � � � �
	 ����� ������� �
	 ��� � ���
or � � � 	���������� 	� � � !�

times

�

1Notice that the visibility factor "$#&%('�%*)&+ hidden in the function , is essential, since -.#&%./0%1)2+ refers to
the radiance leaving % , while 354 6879 #&%�/:%;)2+ applies to the radiance arriving at %*) . To put this another way, -
and 3�4 6879 are both exitant quantities, since 3<4 6=79 specifies the importance leaving %*) , rather than the importance
arriving at % .
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Next, we define the path space � as

� � ��
��� � � � �

i.e. � represents the set of paths of all finite lengths. We extend the area-product measure �
to this space in the natural way, by letting

� ��� � � ��
��� � � � ����� � � � � (8.6)

That is, the measure of a set of paths is simply the sum of the measures of the paths of each

length.2

To complete the definition of the path integral formulation (8.5), we must define the inte-

grand
	��

. To do this, we start with the measurement equation (8.4), and recursively expand

the transport equation (8.1) to obtain

��� � ��
��� � � ���
	��

������� � �
�(� ��� ����� � ��� � ��
 ��
 � � 	 � ��� 
 
 � ��� 
 ��� 
�� � ��� ��� 
�� � 
�� � �
� % & ' (� ��� ��
 � �
� � � �
	 ����� � ����� �
	 ��� � � (8.7)� � ���

� ������� ����� ��� ����� � ��� � %!& ')(� ����������� � �
	 ��� � ���
	 ���(� �
� � ���

� ������� ����� ��� ����� � ��� � 	 � ��� � �
�(� ��� � ��� ����� � � � �
� % & ' (� ����� ��� � � �
	 ����� ���
	 ����� ���
	 ��� � �

� ����� �
The integrand

	��
is defined for each path length

�
separately, by extracting the appro-

priate term from the expansion (8.7). For example, given a path
�� � � � ��� � � ��� , we have

	�� ���� � � ��������������� ��� ��� � � �(� � 	 ������������� ��� � �
��� ������� � � � 	�� ����� ��� � ����� ��� ��� � � ��� � % & ')(� ��� � ����� �

(see Figure 8.2). This function
	 �

is called the measurement contribution function.

2This measure on paths is similar to that of Spanier & Gelbard [1969, p. 85]. However, in our case the path
space � does not include any infinite-length paths. This makes it easy to verify that (8.6) is in fact a measure,
directly from the axioms [Halmos 1950].
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Figure 8.2: The measurement contribution function � � is a product of many factors (shown
for a path of length 3).

We have now defined all the terms of path integral model (8.5): the integration domain,

integrand, and measure. There is nothing particularly complicated about this transforma-

tion; we have just expanded and rearranged the transport equations. The most significant

aspect is that we have removed the sum over different path lengths, and replaced it with a

single integral over an abstract measure space of paths.

8.2.1 Advantages of the path integral formulation

The path integral formulation has several advantages. First, the expression for each mea-

surement has the form of an integral (as opposed to some other mathematical object). This

allows us to derive new rendering algorithms by applying general-purpose integration tech-

niques, such as multiple importance sampling (Chapter 9).

Second, the path integral model has a much simpler structure: a single expression de-

fines the value of each measurement. In contrast, the integral equation approach requires

two equations (the light transport and measurement equations), one of which is defined re-

cursively. With the path integral approach, there are no adjoint equations, no intermediate

quantities such as light or importance, and no need to choose between these alternatives.

Measurements are defined and computed directly, by organizing the calculations around a

geometric primitive (the path), rather than radiometric quantities.

By dealing with whole paths rather than rays, the path integral framework also provides

a more explicit and complete description of light transport. Each path specifies the emission,

scattering, and measurement events along a complete photon trajectory. On the other hand,



8.2. THE PATH INTEGRAL FORMULATION 225

integral equations describe the scattering events in isolation, by specifying the interaction

of light with each surface separately.

This has practical consequences for sampling paths: the natural strategy for solving an

integral equation is to sample the equation recursively, leading to paths that are built starting

entirely from the lens, or entirely from a light source (depending on whether the light trans-

port equation or its adjoint is sampled). With the path integral approach, on the other hand,

it is possible to construct paths in arbitrary ways, e.g. by starting with a vertex in the middle,

and building the path outwards in both directions. This leads directly to sampling strategies

such as bidirectional path tracing (Chapter 10), and the Metropolis algorithm (Chapter 11).

Furthermore, the path integral approach gives a convenient framework for computing

probability densities on paths (as described in the next section). This allows us to easily

compare the probabilities with which a given path is sampled by different techniques. This

is an essential prerequisite for the use of the multiple importance sampling and Metropolis

techniques.

8.2.2 Applying the path integral formulation

In this section, we explain how the path integral framework can be used in Monte Carlo

algorithms. We first show how measurements can be estimated, by randomly generating

transport paths
��

, and computing an estimate of the form
	�� � �� ����� � �� � . This requires the

evaluation of the probability density � � �� � with which each path was sampled. We consider

how to do this within the framework of local path sampling, which is general enough to

describe virtually all unbiased path sampling algorithms that are used in practice.

Our goal is to estimate the path integral

��� � � � 	��
���������� ������
for each measurement

� �
. To do this, the natural Monte Carlo strategy is to first sample a

random path
��

according to some chosen density function � , and then compute an estimate

of the form ����� 	��
� �� �
� � �� � � (8.8)
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This is an unbiased estimate of the measurement
���

, since its expected value is

��� 	�� � �� �
� � �� ��� � � � 	��
������

� ������ � ���������� ���� � (8.9)

� � � 	��
���������� ���� �� ��� �
where we have assumed that � is measured with respect to the area-product measure � , in

order for the first line of this equation to hold.

To apply this strategy, we must be able to evaluate the functions
	 �

and � for the given

path
��

. An explicit formula for the measurement contribution function
	 �

has already been

given; thus, the main question is how to evaluate the probability density � � �� � . Obviously,

this depends not only on the particular path
��

, but also on how this path was generated. For

example, one way to generate paths is with ordinary path tracing: the vertex
� � is chosen on

the lens, and subsequent vertices
� ��
 � , � � � , ���

are generated by following random bounces

backward, until eventually we connect the path to a random vertex
� �

on a light source. The

probability � � �� � depends on all of the random choices made during this process, as we will

discuss in more detail below.

8.2.2.1 Local path sampling

We will concentrate on a particular family of methods for generating paths, called local path

sampling algorithms. These methods generate vertices one at a time, based on local infor-

mation at existing vertices (such as the BSDF). There are three basic mechanisms that can

be used to construct paths in this framework:

� A vertex can be chosen according some a priori distribution over the scene surfaces.

For example, this can be used to sample a vertex on a light source, with a probability

density proportional to the radiant exitance (i.e. the power per unit area emitted over

the light source). Similarly, this technique can be used to sample the initial vertex on

a finite-aperture lens. It can also be used to sample intermediate vertices along the

path, e.g. to sample a vertex on a window between two adjacent rooms.
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� The second method for generating a vertex is to sample a direction according to a lo-

cally defined probability distribution at an existing vertex
�

, and then cast a ray to find

the first surface intersection
� �

(which becomes the new vertex). For example, this is

what happens when the BSDF at an existing vertex is sampled (or an approximation

to the BSDF). This mechanism can also used to sample a direction for emission, once

a vertex on a light source has been chosen.� The third mechanism for path sampling is to connect two existing vertices, by check-

ing the visibility between them. In effect, this step verifies the existence of an edge

between two vertices, rather than generating a new vertex.

By combining these three simple techniques, it is possible to sample paths in a great variety

of ways. Subpaths can be built up starting from the light sources, the lens, or from an arbi-

trary scene surface. These subpaths can then be joined together to create a full path from a

light source to the lens. This local sampling framework is general enough to accommodate

virtually all path sampling techniques that are used in practice.3

8.2.2.2 Computing the path probabilities

In this section, we describe how to compute the probability density � ������ for sampling a given

path
�� . As mentioned above (equation (8.9)), we wish to compute the probability density

with respect to the area-product measure � , that is:

� ������ � ������ ���� � �
Given a path

�� � � � � ��� � � , this expands to

� ���� � � ������ ����� � � � � � �
� ��
 � �

����
	 ��� 
 � �
3As an example of a non-local sampling technique, suppose that the location of a new vertex is computed

by solving an algebraic equation involving two or more existing vertices. For example, this could be used to
determine the point � on a curved mirror that reflects light from a given vertex % to another vertex % ) . This is
not allowed in the local path sampling framework, since the position of � depends on more than one existing
vertex. This type of non-local sampling will be discussed further in Section 8.3.4.
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Figure 8.3: Geometry for converting between area and directional probabilities.

Thus to evaluate � � �� � , we must compute the probability per unit area ( ��� �
�
	 ) with which

each vertex
��


was generated, and multiply them together.

We now consider how to compute the probability for sampling a given vertex. Accord-

ing to the local path sampling model, each vertex
�(


can be generated according to one of

two methods: either
� 


is sampled from a distribution over the scene surfaces (in which the

probability density ��� � �
	 ��� 
 � can be computed directly), or else it is generated by casting

a ray from an existing vertex, in a randomly chosen direction.

To calculate the density in the latter case, let
�

be the existing vertex, and let
� � � � 


be

the new vertex. We assume that
� �

was generated by casting a ray from
�

in the direction

��� , where

��� � �� ��� �

(see Figure 8.3). We are also given the probability density � � � � � with which ��� was chosen

(measured with respect to solid angle). To compute the density � ��� � � with respect to surface

area, we must express it in terms of the given density � � � � � . These two densities are related

by ����
	 ��� � � � ������ � ��� � ��� � ��� ��
	 ��� � �
� ��� � ���� � � � ��� � � � ����� � � �� � �� � � � � ����� (8.10)

(see Figure 8.3). The parenthesized expression is the solid angle subtended at
�

per unit of
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surface area at
���

.

Using these rules, it is straightforward to compute the probability density � ������ for the

whole path. We simply consider the vertices in the order that they were generated, and mul-

tiply together the densities ��� � �
	 for each vertex (converting from directional to area prob-

abilities as necessary). There are few restrictions on how the paths are generated: starting

from the lens (as with path tracing), starting from the lights (as with particle tracing), or

a combination of both (as with bidirectional path tracing). Paths can also be constructed

starting from the middle, by sampling vertices according to predefined distributions over the

scene surfaces: this could be useful in difficult geometric settings, e.g. to generate transport

paths that pass through a known small portal.

In the path integral framework, all of these possibilities are handled in the same way.

They are viewed as different sampling strategies for the measurement equation (8.5), lead-

ing to different probability distributions on the space of paths. They are unified under one

simple equation, namely the estimate
	 �
� �� � ��� � �� � .

Densities with respect to projected solid angle. In many cases, it is more natural and

convenient to represent directional distributions as densities with respect to projected solid

angle � � (rather than ordinary solid angle � ). We summarize the equations here for future

reference.

Given an existing vertex
�

(Figure 8.3), let � � � � � and � � � ��� � be the probability densi-

ties with respect to ordinary and projected solid angle respectively for sampling the given

direction ��� . These two densities are related by����
� � � ��� � � ����
� � ��� � �
� � ��� ��
� � � ��� �
� � � ��� �� � � � � ��� �  

����� ��� � � � (8.11)

where we have used the relationship

�
� � � ��� � � � ��� � � ��� � � �
� � ��� � �
Putting this together with equation (8.10), we can convert between densities with respect
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to projected solid angle and densities with respect to surface area using

� ��� � � � � � � ��� � � ����� ��� � � ����� ��� �� � �� � � � � � �� � � � �� � � � ��� ����� � � ���
where � is the geometric factor (8.2).4 Notice that this conversion factor is symmetric, un-

like the conversion factor (8.10) for densities with respect to ordinary solid angle.

8.3 The limitations of path sampling

Although algorithms based on path sampling tend to be simple and general, they do have

limits. For example, if point light sources and perfect mirrors are allowed, then there are

some types of transport paths that cannot be sampled at all. Images computed by path sam-

pling algorithms will be missing the contributions made by these paths. As a typical exam-

ple of this problem, consider a scene where a point light source reflects off a mirror, creat-

ing caustics on a diffuse surface. Although algorithms such as bidirectional path tracing are

capable of rendering these caustics when viewed directly, they will fail if the caustics are

viewed indirectly through a second mirror. (The indirectly viewed caustics will simply be

missing from the image.)

More generally, there are some light transport problems that are provably difficult for

any algorithm. In this regard, it has been shown that some ray tracing problems are unde-

cidable, i.e. they cannot be solved on a Turing machine [Reif et al. 1994]. These examples

are not physically realizable, since they rely on perfect mirrors and infinite geometric preci-

sion. However, we can expect that as the geometry and materials of the input scene approach

a provably difficult configuration, any light transport algorithm will perform very badly.

Our goals in this section are more practical. We are mainly concerned with the limi-

tations of local path sampling algorithms, as described in Section 8.2.2.1. For this type of

algorithm, problems are caused not only by mirrors and point sources, but also by refraction,

4Note that the visibility term " #2% '<%*)2+ hidden in , is required only when the visibility between % and%;) is not known.
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perfectly anisotropic surfaces, parallel light sources, pinhole lenses, and orthogonal view-

ing projections. Our goal is to determine which combinations of these features can cause

local path sampling algorithms to fail.

We start by reviewing Heckbert’s regular expression notation for paths. Next, we show

how to extend this notation to describe the properties of light sources and sensors, in order

to allow features such as point light sources and orthographic lenses to be represented in a

compact and consistent way. We then give a criterion for determining which types of paths

cannot be generated by local path sampling. Finally, we consider some ways to lift this

restriction using non-local sampling methods.

8.3.1 Heckbert’s regular expression notation for paths

Heckbert [1990] introduced a useful notation for classifying paths by means of regular ex-

pressions. Originally, it was used to describe the capabilities of multi-pass global illumi-

nation algorithms, e.g. algorithms that combine radiosity and ray tracing. In this context,

it was assumed that all BSDF’s can be written as a linear combination of an ideal diffuse

component and an ideal specular component. For example, a typical surface might reflect

50% of the incident light diffusely, reflect 10% in a mirror-like fashion, and absorb the rest.

Paths are then described using regular expressions of the form5

� ��� � � ��� � �
Each symbol represents one vertex of a path:

�
denotes the first vertex of the path, which

lies on a light source, while
�

denotes the last vertex (the camera position or “eye”). The

remaining vertices are classified as
�

or
�

, according to whether the light was reflected by

the specular or diffuse component of the surface respectively. Note that the symbols
�

and�
represent the type of the scattering event at each vertex, not the type of the surface, since

the surface itself is allowed to be a combination of specular and diffuse.

5In regular expressions, ��� denotes one or more occurrences of � , ��� denotes zero or more occur-
rences of � , �
	 � denotes a choice between � or � , � denotes the empty string, and parentheses are used
for grouping.
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Definitions for general materials. This notation is easily extended to scenes with general

materials, by redefining the symbols
�

and
�

appropriately. We show how to make these

definitions rigorously, by relating them to the BSDF.

Let
�� � ��� ��� � � � be a path, and consider the scattering event at a vertex

��

(where

� 	 � 	 �
). For general materials, we let the symbol

�
represent any scattering event

where the BSDF is finite, i.e. where

	 � ��� 
 
 � ��� 
 ��� 
�� � � 	 � �
All other scattering events (where the BSDF is not finite) are denoted by the symbol

�
. This

category includes not only pure specular reflection and refraction, where light is scattered in

a zero-dimensional set of directions, but also pure anisotropic scattering, where light is scat-

tered in a one-dimensional set of directions (similar to the reflection properties of brushed

aluminum). These possibilities will be discussed in more detail below.

8.3.2 Full-path regular expressions

Heckbert’s notation describes only the scattering events along a path. We show how to ex-

tend these regular expressions in a natural way, to describe the properties of light sources

and sensors as well.

Each light source is classified according to a two-letter combination, of the form��� � � � ��� � � � . The first letter represents the surface area of the light source:
�

denotes a

finite-area source, while
�

denotes a source with zero area (e.g. a point or linear source).

The second letter represents the directional properties of the emission:
�

denotes emission

over a finite solid angle, while
�

denotes emission over a set of angles with measure zero.

Thus, a point light source that radiates light in all directions would be denoted by the

regular expression
� � �

. Note that unlike Heckbert’s notation, the symbol
�

does not

represent a real vertex; it is simply a placeholder that indicates the ordering of vertices (i.e.

the fact that the first vertex is on a light source rather than a sensor).

Similarly, to represent the properties of the sensor we use a suffix of the form

� � � � � ��� � � � � �
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� � �
a diffusely emitting sphere� � �
sunlight shining through a window, where the window itself is mod-
eled as the light source� � �
a point spotlight� � �
a laser beam� � �
a finite-aperture lens

� � �
an orthographic projection lens (where the image plane located
within the scene, rather than at infinity)� � �
a pinhole lens

� � �
an idealized spot meter (which measures radiance along a single
given ray)

Table 8.1: Examples of regular expressions that approximate various kinds of real light
sources and sensors (e.g. by treating the sun as a point at infinity, etc.)

The first letter represents the directional sensitivity of the sensor, i.e. whether it is sensitive

to light over a finite solid angle (
�

), or to light that arrives from a set of directions with

measure zero (
�

). The second letter represents the surface area of the sensor, with the same

conventions used for the first letter of the light source classification.

Table 8.1 gives some examples of light sources and lens models which are good ap-

proximations to the various letter combinations (e.g. if we treat the sun as a point source at

infinity).

Combining this notation for light sources and sensors with Heckbert’s notation for scat-

tering events, an entire path is thus described by a regular expression such as

� � � � � � � � �
This example represents a path that starts on an ordinary area light source, is scattered by

zero or more specular surfaces, and terminates at an ordinary finite-aperture lens. This ex-

tended notation is called a full-path regular expression.

The main advantage of full-path expressions is that they give a compact way to describe

the paths generated by specific sampling strategies. For this purpose, it is essential to specify



234 CHAPTER 8. PATH INTEGRAL FORMULATION

the properties of the light source and sensor, since some strategies do not work for sources

or sensors with zero area, or those that emit or measure light over a zero solid angle. (For

example, “pure” path tracing cannot handle point light sources, since they will never be

intersected by a path that is randomly generated starting from the lens.) We will make ex-

tensive use of full-path expressions to describe the sampling strategies of bidirectional path

tracing and Metropolis light transport, and also to investigate the limitations of local path

sampling.

Formal definitions of the full-path notation. Full-path regular expressions can be de-

fined more rigorously in the following way. First, we show how to split the emitted radi-

ance function
� �

into a product of two factors
� & � (� and

� & � (� , which represent the spatial and

directional components of the emission respectively. The factor
� & � (� is defined by

� & � (� ��� � � � � � ������� � � ����� � � � ��� (8.12)

and represents the radiant exitance (emitted power per unit area) associated with a point
�

on a light source. The second factor
� & � (� is given by

� & � (� ��� � � � � ������� � � � � � & � (� ��� ��� (8.13)

and represents the directional distribution of the emitted radiance at
�

. These factors corre-

spond to the fact that sampling for emission is naturally subdivided into two steps, consisting

of first choosing a point on a light source, and then a direction for the emitted ray. Notice

that by definition, � ��� � & � (� ��� � � ���
� � � � � �  �
so that

� & � (� is simply the probability density function for � , for a given choice of
�

.

With these definitions, the light source notation
� ���

has the following meaning:

� � �� � �
if
� & � (� ��� � � 	 �

�
otherwise �

� � �� � �
if
� & � (� ��� � �
�(� � 	 �

�
otherwise �
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Likewise, we can rigorously define the meaning of the notation
� � �

for sensors. This

is done by splitting the emitted importance function % � into a product of two factors % & � (�
and % & � (� , and making a definition similar to the one for

� ���
.

Thus far, we have only distinguished between light that is emitted or scattered in a two-

dimensional set of directions (
�

), vs. all other cases (
�

). It is sometimes useful to classify

the
�

vertices further, according to whether light is scattered in a zero- or one-dimensional

set of directions (
���

vs.
�.�

). This extended notation is discussed in Appendix 8.B, and can

be used to describe the properties of light sources, sensors, and materials more precisely.

Note that Langer & Zucker [1997] have independently proposed a classification system

for light sources that is similar to the one described here. However, they do not attempt to

give a general definition of their classification scheme, they do not develop any notation for

it, and they do not consider the classification of sensors or scattering events.

8.3.2.1 Interpreting sources and sensors as scattering events

The definitions above are somewhat cumbersome to use, because sources and sensors are

treated as special cases. In other words, the first two
� � � � � symbols and the last two

� � � � �
symbols of each path cannot be handled in the same way as the rest, since they represent

emission and measurement rather than scattering. It would be easier to reason about these

regular expressions if the
�

and
�

symbols had a consistent meaning.

In this section, we show how the
�

and
�

symbols describing light sources and sen-

sors can be interpreted as “scattering events” in a natural way. To do this, we introduce an

imaginary vertex at each end of the path, and extend the definition of the BSDF to describe

light transport to and from these imaginary vertices. With these changes, all of the symbols

in a full-path regular expression have a consistent interpretation, so that the special cases

associated with sources and sensors can be avoided.

The conversion from emission to scattering is described in two steps. We first consider

the directional component of the emission, and then the spatial component.

Scattering events at
� �

and
� � . We show how the directional components of the emission

functions
� �

and % � can be interpreted as scattering at the vertices
���

and
� � . To do this,

we introduce two imaginary vertices ��� and ��� , which become the new path endpoints.
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A complete path thus has the form

� �
��� ��� ��� � � � � � �

where the vertices � � and � � always occur at positions
� 
 � and

� � � �
respectively.

We regard the vertex � � as the source of all light, while � � is the source of all impor-

tance. That is, rather than allowing surfaces to emit light directly, we assume that emission

occurs only at the vertex � � . Light is emitted along imaginary rays of the form � �
� �

,

and is then scattered at
�

into physical rays of the form
� � ���

. This process is defined

so that we obtain the same results as the original emission function
� �

. Similarly, all sen-

sor measurements are made at the point � � . This corresponds to the following symbolic

definitions:

����� � � ��� � � � & � (� ��� ���	 � � � � ���	��� � � � � & � (� ���	��� � ���	 � ��� � ���	� � � � � % & � (� ��� � ��� ���
% �����	� � � � � %!& � (� ��� ���

where
� & � (� and % & � (� are the spatial and directional components of emission (8.12, 8.13).

Scattering events at � � and ��� . We now show how the spatial components of emission

can be interpreted as scattering at the imaginary vertices � � and ��� . To do this, we assume

that the emitted light is initially concentrated on the single imaginary ray � �
� � � . This

light is scattered at � � , to obtain a distribution along rays of the form � � � �
. We then

proceed as before (with a second scattering step at
�

), to obtain emission along physical

rays
�	���
�

. Similarly, measurements are handled by scattering light from rays of the form�	� � � into the single ray � � � ��� , where the actual measurement takes place.

This idea corresponds to the following symbolic definitions. First we define
� � and

� �
to represent the total power and the total importance emitted over all surfaces of the scene:

� � � � � � & � (� ��� ���
	 ��� ���
� � � � � % & � (� ��� ���
	 ��� � �
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Next, we change the emission functions so that light and importance are emitted on a single

imaginary ray: �����
� �

�
� � � � �

� �
% ��� ��� � � � � � �

� �
Finally, we extend the BSDF to scatter this light and importance along rays of the form

� �
���

and
�	�

��� respectively:

	�� �
� �

�
� �

��� � � � & � (� ��� � � �
� �	 � ���	� � � � � � � � % & � (� ��� � � � � �

Notice that these BSDF’s are normalized to integrate to one, so that there is a natural corre-

spondence with scattering.

With these conventions, every
�

and
�

symbol corresponds to a unique scattering event

at some vertex of the full path
� 
 � � � � � � � �

. Furthermore, these symbols have a consistent

meaning. Given any vertex
� 


of a path, the symbol
�

means that the BSDF at that ver-

tex is finite (so that energy is spread over a two-dimensional set of adjacent vertices), while
�

means that the BSDF is not finite (in which case power is distributed to a zero- or one-

dimensional set of adjacent vertices). This consistency will be useful as we study the limi-

tations of local path sampling below.

8.3.3 The limitations of local path sampling

In this section, we show that local sampling strategies can only generate paths that contain

the substring
� �

. Any path that does not contain this substring cannot be sampled, and the

contributions of these paths will be missing from any computed images. Examples of paths

that cannot be sampled are shown in Table 8.2.

We start by consider specular vertices, and the constraints that they impose on path sam-

pling. Next, we show that paths can be sampled by local sampling strategies if and only if

they contain the substring
� �

. Finally, we discuss the significance of these results.

Lemma 8.1. Let
�� be any path generated by a local sampling algorithm, for which the mea-

surement contribution function
	 �
������ is non-zero. If this path contains a specular vertex

�.

,
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� � � � � � �
a point light source reflected in a mirror, viewed with a pin-
hole lens� � � � � � � �
caustics from a parallel light source, viewed with an ortho-
graphic lens� � � � � � � � �
caustics from a point light source, viewed indirectly through
a mirror with a pinhole lens

Table 8.2: Examples of path types that cannot be generated by local sampling algorithms.

then one of the adjacent vertices
�.
�� �

or
� 
 
 � was necessarily generated by sampling the

BSDF at
� 


.

Proof. For any fixed positions of
�.


and
� 
 
 � , consider the positions of

� 
�� �
for which

	 � ��� 
 
 � ��� 
 ��� 
�� � � � � �
i.e. for which

��

is a specular vertex. By definition, the possible locations of

��
�� �
form a

set of area measure zero, since they subtend a zero solid angle at
��


. Similarly, if we fix

the positions of
� 


and
� 
�� �

, the possible locations of
� 
 
 � for which

� 

is a specular vertex

form a set of measure zero.

Thus, if the vertices
��
 
 � and

� 
�� �
are generated independently by the local sampling

algorithm, then
� 


has type
�

with probability one. Thus if
�.


has type
�

, then one of these

two vertices must be generated by sampling the BSDF at
�(


(since this is the only other

alternative that is allowed within the framework of local path sampling).

It is easy to extend this result to the case where several specular vertices are adjacent.

Corollary 8.2. Let
�� be a path as described above, and suppose that

�� contains a subpath� 
 � ��� � � of the form
� � � �

. Then one of the endpoints
� 


or
� �

must be generated by sam-

pling the BSDF of the adjacent
�

-vertex (that is, either
��
�� �

or
� � 
 � ).

We are now ready to consider the sampling of full paths.
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Theorem 8.3. Let
�� be a path generated by a local sampling algorithm for which the mea-

surement contribution function is non-zero. Then
�� necessarily has the form

� ��� � � � � � � ��� � � � � � �
i.e. it must contain the substring

� �
. Furthermore, it is possible to generate any path of

this form using local sampling strategies.

Proof. If
�� does not contain the substring

� �
, then it has the form

� ��� � � � � � ��� � � � � ��� � � � � �
This path has � specular substrings of the form

� �
, but only � �  vertices of type

�
separat-

ing them.6 Thus according to the corollary above, one of these
�

vertices must be generated

by sampling the BSDF of both adjacent specular vertices (which is not possible). In effect,

there are not enough
�

vertices to allow this path to be sampled by local techniques.

Conversely, let
�� be a path that contains an edge

�(
 � 
�� �
of the form

� �
. Then this path

can be generated by at least one local sampling strategy: namely, by generating the subpath��� � � � � 
 starting from a light source, and the subpath
�.
�� � � � � � � starting from the lens.

Thus, the
� �

condition is necessary and sufficient for local path sampling. Of course,

specific algorithms may have more restrictive requirements. With ordinary path tracing, for

example, all vertices are generated starting from the camera lens, except for the vertex
� �

which is chosen directly on the surface of a light source. This implies that ordinary path

tracing can only sample paths of the form

� ��� � � � � � ��� � � � � � �
These results are significant for two reasons. First, it is very common for graphics sys-

tems to support point light sources and perfect mirrors, even though these are mathematical

idealizations that do not physically exist. If scenes are modeled that use these primitives,

then some lighting effects will simply be missing from the computed images. Second, even

6The symbol following - and the symbol preceding
�

do not count, because they are not sampled: they
represent the fixed, imaginary vertices ��� and ��� .
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if we disallow these features (e.g. by disallowing point and parallel light sources, so that ev-

ery path starts with the prefix
� � �

), we should expect that path sampling algorithms will

perform badly as the scene model approaches a difficult configuration. In this case, the con-

tributions from the difficult paths will not be missing; however, they will be sampled with

high variance, leading to noisy regions in resulting images.

8.3.4 Approaches to non-local sampling

We outline several approaches for handling paths that cannot be sampled locally. The easiest

solution is to not allow these paths in the first place, by placing mild restrictions on the scene

model. For example, any of the following strategies are sufficient:� Allow only (ordinary) area light sources, so that all paths start with
� � �

.� Allow only finite-aperture lenses, so that all paths end with
� � �

.� Do not allow perfectly specular surfaces.

These strategies ensure that path sampling algorithms will produce unbiased results, al-

though there can still be high variance in limiting cases as discussed above.

A second approach is to use a more sophisticated path sampling strategy. We first intro-

duce some new terminology.

Chains and chain separators. Given a path, we divide its edges into a sequence of chains

as follows. A vertex is called a chain separator if it has type
�

, or if it is one of the special

vertices � � or ��� . A chain is now defined to be a maximal subpath bounded by chain

separators (not including the symbols
�

and
�

, which do not correspond to any vertex).

For example, the path � � � � � � � � � �
consists of four chains. The first chain is

� � �
, consisting of the imaginary edge from � �

to
���

, and the real edge from
�.�

to
���

. The second chain is
� �

(the edge
� � � � ), the third is� � � �

(three edges connecting
� � to

���
), and the last chain is

� �
, an imaginary edge from���

to � � . Notice that each chain separator vertex is shared between two chains (except for

the special vertices � � and � � ).
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Connectors. We can extend the class of paths that can be sampled by implementing meth-

ods that generate connecting chains. That is, given two vertices
�

and
� �

of type
�

, we

would like to generate a chain of zero or more specular vertices that connect them. Strate-

gies that do this are called connectors. The simplest connector consists of joining the two

vertices with an edge, by checking the visibility between them. This yields a chain of the

form
� �

.

Another simple form of connector can be used with planar mirrors, by computing the

point � on the mirror that reflects light from
�

to
� �

. If such a point � does not exist, or if ei-

ther of the segments
�

� or �
���

is occluded, then the connection attempt fails. Otherwise, we

have generated a connecting chain of the form
� � �

. This is similar to the idea of “virtual

worlds” and “virtual light sources” used in radiosity and elsewhere [Rushmeier 1986, Wal-

lace et al. 1987, Ward 1994].

Connectors can also be used to handle parallel light sources (
� � �

) and orthogonal view-

ing projections (
� � �

) in a simple way. For example, a connecting chain between a real

vertex
�

and the imaginary vertex ��� can be generated by projecting
�

onto the surface of

the light source along the direction of emission.

The general case is closely related to the problem of computing illumination from curved

reflectors [Mitchell & Hanrahan 1992]. The connecting chains problem can be equivalently

stated as follows: given a point source at
�

, what is the irradiance received at
� �

over spec-

ular paths? Light flows from
�

to
� �

along paths of stationary optical length, also known as

Fermat paths. In general, there are a countable set of such paths, and they can be found by

solving an optimization problem [Mitchell & Hanrahan 1992]. Once a path has been found,

the irradiance received at
���

along that path can be determined by keeping track of the shape

of the wavefront as light is reflected, refracted, and propagated, and computing the Gaussian

curvature of the wavefront at
� �

.

In our case, we seek an algorithm that can either generate all such paths (in which case

their contributions are summed), or one that can generate a single path at random (in which

case there must be a non-zero probability of generating each candidate path, and this proba-

bility must be explicitly computable). This would make it possible to generate paths of any

type in an unbiased Monte Carlo algorithm.

Although it seems unlikely that the general case will ever be practical, these ideas are
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still useful for handling planar mirrors, short sequences of such mirrors, or simple curved

surfaces. With more sophisticated geometric search techniques, it may eventually be pos-

sible to handle moderately large numbers of specular surfaces in this way with reasonable

efficiency.



8.A. OTHER MEASURES ON PATH SPACE 243

Appendix 8.A Other measures on path space

We describe several new measures on the path space � . These include the measurement contribu-

tion measure, the power throughput measure, the scattering throughput measure, and the geometric

throughput measure. Each of these measures has a natural physical significance, which is described.

We also show that it is possible to base the path integral framework on any of these measures (rather

than using the area-product measure � ). To avoid confusion, we will use the symbol ��� for the area-

product measure throughout this appendix.

The measurement contribution measure. The most important of these new measures is the

measurement contribution measure, defined by

��������
	�� � � � � ��
� 	 � � ��
� 	�� (8.14)

This equation combines � � and ��� into a single measure � �� , with the following physical significance:

� �� ���
	
represents the portion of measurement � � that is due to light flowing on the given set of paths�

. In particular, the value of � � itself is given by

� � � � �� ����	��
i.e. � � is the measure of the whole path space. The units of � �� ����	

are ����� (the unit of sensor re-

sponse).

This measure � �� is actually the fundamental component of our path integral framework. It is

more basic than the measurement contribution function � � , since � � implicitly depends on the mea-

sure used for integration (i.e. the area-product measure ��� ). By choosing different integration mea-

sures (e.g. the ones we define below), we can obtain any number of different but equivalent “mea-

surement contribution functions”. In contrast, the meaning of � �� does not depend on details such

as these.

The main reason for working with the function � � (rather than the measure � �� ) is so that Monte

Carlo estimators can be written as a ratio of functions, rather than as Radon-Nikodym derivatives.

For example, the estimator � � � 
 	"!$#%� 
 	
corresponds to the Radon-Nikodym derivative

& � ��&(' � 
 	��

Although this may be an improvement from the standpoint of purism (since it avoids any reference
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to the auxiliary measure � � ), it is undesirable from a practical standpoint. It makes use of the Radon-

Nikodym derivative (which is unfamiliar to many in graphics), and leaves us with a rather abstract

expression with no clear recipe for computing its value. This is why we have emphasized the formu-

lation of Section 8.2, where � �� is split into a function � � and a measure � � , and where the measure

is made as simple as possible.

The power throughput measure. We now consider another interesting measure called the

power throughput measure ( ��� ), which is obtained from the previous measure by omitting the im-

portance function
� & ')(� . Explicitly, it is defined for paths of length � by

� � � ����	 � � ��� � ��� �	� � � 	�
 ��� �
� � � 	 � � ��� ��� � ��� � � 	�
 ��� ��� � � 	������ (8.15)
����� � � ��� ��

� � � ��
 � � � � 	�
 ��� ��
 � � � � 	 &�� ��� � 	������ &�� ��� � 	��

where
��� � � , and then extended to a measure ��� over the whole path space by the same technique

we used for the area-product measure (8.6).

Physically, � � ����	
represents the power that is carried by a set of paths

�
(units: � � � ). A nice

property of this measure is that it is independent of any sensor: there is only one measure for the

whole scene, rather than one per sensor (as with � � � ). It can still be used to evaluate measurements,

however, using the relationship

� � � � � � & ' (� ��� ��
 � � � � 	 & � � ��
� 	��
This equation shows that � � can be split into a function and a measure in more than one way. In this

case, we have moved almost all the factors of � � into the integration measure, leaving only
� & ' (� as

the “measurement contribution function”.

The scattering throughput measure. Next, we discuss the scattering throughput measure �
�
.

The value �
� ���
	

represents the power-carrying capacity of a set of paths
�

, in the following sense:

if a uniform radiance
� �

is emitted along the first segment of each path in
�

, then the power carried

by these paths and received by surfaces at the path endpoints will be

� � �
� ����	��

The definition of �
�

is identical to the previous measure (8.15), except that the emitted radiance func-

tion
� �

is omitted (as well as the importance function
� & ')(� ). A nice property of this measure is that

it depends only on the scene geometry and materials, not on the light sources or sensors. The units
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of �
� ����	

are � � � ����� � .
The geometric throughput measure. Finally, we consider the geometric throughput measure

� � , which measures the geometric “size” of a set of paths. To do this, we start with the expression

for the scattering throughput �
�
, and set all of the BSDF factors to the constant value

� � ��� 
 
 ��� � 
 � � 
�� � 	�� ��	� �

Physically, this corresponds to a scene where the surfaces scatter light in all directions uniformly; the

value
� ! � �	� 	

ensures that � � is energy-preserving (see Section 6.3).7 With this modification to the

scattering throughput measure �
�
, any differences in the power-carrying capacity of different path

sets are due entirely to their geometry.

Explicitly, the geometric throughput measure � � is defined at each path length � by

� � � ���
	�� 
 ��	��� ��
 � ��� 
 ��� �
� � � 	������ 
 ��� ��
 � � � � 	 &�� ��� � 	������ &�� ��� � 	�� (8.16)

and extended to a measure � � over the whole path space as before. The term geometric throughput

measure is particularly appropriate for � � , since it is a natural extension of the throughput measure

� defined on the space of rays (see Section 4.1): these two measures are identical for paths of length

one. The units of � � are the same as the previous measure, namely � � � ����� � .
Notice that � � has several properties that we should expect of a geometric measure on paths.

First, it does not encode any preference for directional scattering at surfaces (since this is a property of

materials rather than geometry). Second, in general the measure � � is not finite, even for scenes with

finite surface area.8 This corresponds to the fact that there is no geometric reason for light energy to

diminish as it propagates over long paths.

In fact, by comparing the scattering and geometric throughput measures, it is possible to deter-

mine whether the power-carrying capacity of a given set of paths is limited primarily by materials

or geometry. A suitable quantitative measure of this is the ratio

�
� ���
	 ! � � ���
	��

7This type of surface has the same radiance when viewed from all directions, on both sides of the surface.
In an environment where only reflection is allowed, i.e. where all surfaces are one-sided, the BRDF would be
����������

instead.
8If the scene has finite area, then �����# � � + will be finite for each path length � . However, when we take the

union � over all path lengths, the resulting space has infinite geometric measure.
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The area-product measure. Finally, we return to the area-product measure � � . The chief ad-

vantage of this measure is that it is simple. This makes it easy to compute the probabilities of various

sampling techniques with respect to this measure, so that we may compare them. Like the geometric

throughput measure � � , the area-product measure is in general not finite.
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Appendix 8.B Subclassification of specular vertices

Specular vertices can be subclassified into two categories, according to whether light is scattered

into a zero- or one-dimensional set of directions. We distinguish between these possibilities with

the symbols � � and � � . This notation allows the properties of sources, sensors, and materials to be

specified more precisely.

We first consider light sources, which are represented by a string of the form
�  ��

. The first

symbol
 

represents the physical extent of the light source, so that � � denotes a point source, while

� � denotes a linear, ring, or other one-dimensional source. The second symbol
�

represents the set

of directions over which light is emitted. The symbol � � denotes emission in a discrete set of direc-

tions, while � � denotes emission into a plane or other one-dimensional set. A similar classification

applies to sensors, which are represented by a string of the form
�  ��

. Several examples are given

in Table 8.3.

For scattering events, � � denotes a surface that scatters light from an incoming direction � � into

a discrete of directions (e.g. a mirror or a window). The symbol � � denotes a surface such as an ideal

anisotropic reflector, where light from an incoming direction � � is scattered into a one-dimensional

set of outgoing rays.

For example, the full-path regular expression

� � � � � �� � � � �
represents a path where light is emitted from a linear source, bounces off zero or more mirrors, and

then is measured by a camera with an orthographic lens.

Formal definitions of
���

,
�.�

, and
�

. For completeness, we give formal definitions of these

symbols. Consider a scattering event at a vertex
� 


. As we have already mentioned, this vertex has

type
�

is the BSDF at
� 


is finite:

� � ��� 
 � � � � � � 	��	� �

where � � and � � are the directions toward
� 
 
 � and

� 
�� �
respectively.

The scattering event at
� 


is defined to be � � whenever the BSDF behaves locally like a

two-dimensional Dirac distribution (as was used to define the BSDF for mirror reflection in
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� � � � a uniform point source, point spotlight, etc.� � � � � emission from a point into a planar fan or sheet� � � � � an idealized laser beam� � � � a typical linear or ring source� � � � � an area light source in “flatland” [Heckbert 1990]� � � � sunshine through a window� � � � a typical pinhole lens model� � � � a pinhole lens with motion blur due to movement of the camera (in a static
scene)

� � � � an orthographic viewing projection

� � � � � an idealized spot meter

Table 8.3: Examples of regular expressions for light sources and sensors, where the specular
components have been subclassified into zero- and one-dimensional components.

Section 5.2.1.2). More precisely, this happens when there is a constant ����� such that

� � � � ��� 
 � � � � � 	 &���� � � 	
	 �

for every open set
� ��� �

that contains � � .
Finally, a vertex is defined to be � � if it is not � � or

�
. It is straightforward to extend these

definitions to the classification of light sources and sensors, using the functions
� & � (� and

� & � (� defined

in Section 8.3.2.


