
Rendering Aurora

Tao, Du
taodu@stanford.edu

Wenlong, Lu
wenlongl@stanford.edu

June 11, 2014

1 Introduction

Figure 1: an aurora image from Tessa Macintosh, 2006

Aurora is a splendid natural phenomenon which has not been fully under-
stood by human beings yet. As a result, rendering a physically plausible aurora
remains to be challenging. In our final project, we provide a complete pipeline
to render aurora based on physical simulation and volumetric rendering. The
aurora shape is generated by simulating a 2D footprint, then a volume grid is
built based on the ddensity of the footprint. We generate photons inside the
volume for volumetric photon mapping. The rendering result is also enhanced
by applying multiple kinds of noises and customized colormap.

The remaining sections are organized as follows: section 2 covers all the
algorithms and technical details in rendering aurora; section 3 gives the final
image; The challenges and division of work are provided in section 5.

2 Algorithms and Techniques

2.1 Creating the Footprint

To create a footprint that can give a natural looking outline for the aurora, we
used a simple 2D fluid simulation as suggested in [2]. Different from what they

1



did in the original paper, we initialize the density field and the velocity field
with sine wave functions, shown in Figure 2(left). And we ran the simulation
for a few frame to get a footprint on a straight line (middle). Then we use a low
frequency noise curve to remap the density field and create our final foorprint
(right).

Figure 2: Footprint

2.2 Generate photons

After creating the footprint, the next thing is to build an axis-aligned bounding
box as the volume that contains the aurora. We divided the box into small
grids, and the density in each grid is computed from the footprint. The density
here is used to decide whether a point is inside aurora or not.

Besides the aurora density above, we also included the air density in our
volume. The air density decreases exponentially along the height, and is used
to modulate the absorption and scattering parameters at different points.

We followed the method suggested in [1] to generate photons inside the
volume. We first traced multiple electron beams from uniformly distributed
starting points in the volume. For each beam, the electron can collide with
the atoms in the atmosphere and therefore be deflected. We simulated this
process and generated photons at each deflection point in the beam. Specifically,
for each starting point p, we first move the electron along the geomagnetic
vector B, whose distance is determined by a random step s, then we add some
displacement in the plane perpendicular to the geomagnetic vector according to
a uniformly sampled angle β:

pnew = p + sB + tu cos(β) + tv sin(β)

2



where u, v and B form a Cartesian coordinate system. The parameter t
determines how much the electron deviates from the geomagnetic vector. We
compute t by sampling in the angle α between pnew − p and B:

tanα =
t

s

and α is uniformly sampled between αD and αD − ∆α. We iterate this
procedure multiple times to generate hundreds of deflection points along the
electron beam, and we place a photon at each deflection point. The radiance
of the photon is interpolated from a pre-defined color map. Instead of applying
the color map in [1], we built up our own color maps for better visual effects.

Figure 3: customized colormap

2.3 Volumetric photon mapping

Unlike the paper [1] which did rendering based on rasterizing photons into image
films directly, we used volumetric photon mapping to render the final images.
For each point inside the volume, we used the photons nearby to compute Lve,
the radiance of the emissive/in-scattering light at that specific point. The radi-
ance comes from the weighted sum of all the photons inside a ball around the
point with a predefined radius r, where the weight is computed from a Gaussian
kernel.

3



Both photon generating and volumetric photon mapping are implemented in
a custom class AuroraDensity, which is inherited from VolumeRegion in pbrt.

2.4 Adding Noise

During the process of generating photons and searching photons, we added
multiple 1D and 2D perlin noises to make our aurora more visually interesting.

1. A high frequncy, small magnitude 1D noise is used to perturb the starting
height where we generate the electrons.

2. A low frequncy, large magnitude 1D noise is used to perturb the height of
the photon when we lookup the color (not intensity).

3. A medium frequncy, medium magnitude 2D noise is used to perturb the
radius we use to search for photon. So the density of aurora curtain varies.

The effect is illustrated in the Figure 4 below.

Figure 4: Adding Noise

2.5 Tracing the Shadow Ray

Since aurora is emitting light in the scene, we expect there should be light cast
on the other objects if there is not occlusion between them. However, when
we tried it with the defaultSamplerRenderer and DirectLightingIntegrator

in pbrt, it turned out that they only took absorption and out scattering into
consideration when tracing a shadow ray in the scene. As we don’t have any
other strong light source in the scene, it is not surprising all the shadow rays
are very dim, and attenuated further by transmitting the volume.

As a result, we extent the Renderer by adding a new function Emission.
It wraps the underlining volumeIntegrator and calls its Li function. For each
shadow ray, given the radiance Li from the surface integrator, we compute the
emission/in-scattering results Lvi and the transmittance T. The final radiance
L is defined as

L = T ∗ Li + Lvi

4



Figure 5: aurora: no cast light on the mountain

Adding this function in the renderer will instantly render the aurora light
cast on other objects in the scene, as can be seen from Figure 5 and Figure 6
below.

3 Results

The final scene includes a landscape model, three different tree models, three
aurora sheets and a background texture. Each aurora sheet is generated by
simulating a footprint described in section 2.1. The light cast on the mountain
is enhanced explicitly in the program when we trace the shadow ray along the
volume. All the pbrt scrips, models and source codes can be found in our github
site.

4 Conclusion

4.1 Challenges

The biggest challenges in the project come from lacking of complete, physically
plausible explanation about generating aurora and determining the emission
light from it. The reference paper got around this problem by using rasterization
instead. However, we are inclined to try rendering aurora in a more ’graphical’
way, so we designed a volume grid to implement volumetric photon mapping
algorithm.

Another challenge comes from tweaking the parameters in the script. It
turns out to be a long and tedious work in the end, probably longer than the
time we spent on coding and debugging our program!

4.2 Division of Work

We figured the techniqal framework for rendering aurora together. Tao Du pri-
marily worked on volumetric photon mapping and extending the surface integra-
tor. Wenlong Lu primarily worked on modeling the aurora, including simulating

5

https://github.com/dut09/pbrt-v2
https://github.com/dut09/pbrt-v2


Figure 6: aurora: final image

the footprint and adding multiple noises. We helped each in the process and
worked together to set up the scene and the pbrt scripts for rendering the final
image.

References

[1] Gladimir VG Baranoski, Jon G Rokne, Peter Shirley, Trond Trondsen, and
Rui Bastos. Simulating the aurora borealis. In Computer Graphics and
Applications, 2000. Proceedings. The Eighth Pacific Conference on, pages
2–432. IEEE, 2000.

[2] Orion Sky Lawlor and Joe Genetti. Interactive volume rendering aurora on
the gpu. 2011.

6


	Introduction
	Algorithms and Techniques
	Creating the Footprint
	Generate photons
	Volumetric photon mapping
	Adding Noise
	Tracing the Shadow Ray

	Results
	Conclusion
	Challenges
	Division of Work


