Modeling and Rendering a Nighttime Bear and River Scene

David Hyde, Lingxiao Li, Tushar Paul
June 6, 2016

Abstract

For our final project, we created a scene with a scene with a bear in a riverbed at night. We
wanted to highlight the fur of the bear, so we implemented the Marschner model, which consists of
the highlight lobes. We modeled our scene in Maya and 3ds Max, including an intricate fur geometry
consisting of about 550,000 hair strands, where each strand consists of 7 cylinders. We also used a
fluid simulation in Maya to generate our water geometry. Finally, we used volumetric scattering to
create a “glowing” firefly. Various effects and artistic direction are used throughout to achieve the
most visually appealing result.

1 Introduction

For our final project, we wanted to create a physically-based rendering of a bear in a stream. We are
inspired by the photograph below:

Figure 1: Inspiration for our scene

During our implementation, we decided to create a night scene instead of a daytime one in order
to achieve the greatest visual drama in the scene and to best emphasize the foci of our project efforts.
We also included a firefly to add a separate, whimsical, visually pleasing element to the scene. When
considering all the elements we needed to render, we realized the scene is highly complex and intricate.
For instance, there are both solid (bear, ground, rocks, trees) and fluid (river water) features, and these

features are coupled (e.g. water flows around the bear’s legs). Additionally, there are very fine-scale
features, such as hundreds of thousands of hairs, consisting of millions of cylinder primitives on the
bear. Finally, in order to render fireflies correctly, we need to use advanced rendering techniques such as
volumetric lighting in order to get the desired “glow” effect.

Due to these complex features, this project presented challenges for both modeling and rendering. On
the rendering front, a naive model for hair (for example, a simple diffuse model, as shown in Appendix
looks flat and unappealing, as it misses many of the often-subtle highlights present in creature hair
that are required to make hair look natural.

Similarly, the human eye is also very skilled at identifying whether water is “real;” thus, great care
must be taken to reproduce accurately simulated and rendered water. Additional rendering complications
arise once water is introduced into the scene, such as the visual differences between wet and dry hair.

We address all these modeling and rendering challenges in the sections that follow. Descriptions of
the contributions of the individual team members, as well as a reproduction of our final rendered image,
are included.

2 Hair Modeling and Rendering

2.1 Hair Modeling

We modeled the hair for our bear using 3ds Max. In 3ds Max, it is possible to place “guide hairs”
(splines placed at certain positions and orientations, anchored to the surface mesh) and use these guide
hairs to generate an appealing, dense fur consisting of arbitrarily many hair strands. We place on the
order of one hundred guide hairs on the bear. The guide hairs can be styled or “groomed” in 3ds Max
using the software’s built-in tools. These styling tools include changing hairs’ lengths, straightening or
curling hair, and making hair stand up or lay flat relative to the surface mesh. Given a collection of
guide hairs, 3ds Max uses these to automatically generate a triangle mesh of hairs (however many the
artist specifies). 3ds Max also lets us control the spline properties of the hair; for example, we specified
that each hair strand should be comprised of seven linear segments.

As 3ds Max generates a “connected” triangle mesh, rather than a disjoint collection of line segments
or cylinders (as the hair geometry actually appears), some work is needed to be done to convert this
resultant geometry into a format appropriate for rendering in pbrt. We wrote a tool that parses the hair
triangle mesh from 3ds Max and creates a pbrt file with each hair strand segment as its own cylinder.
With this tool, we can customize the parameters of the hair cylinders that we generate. For example,
while we used a uniform radius for each hair strand segment cylinder, we could have tweaked the tool so
that the cylindrical segments taper off in radius as they go from the surface of the bear to the end of the
hair strand. In theory, this would give a more realistic hair geometry; however, due to the vast number
of strands in our scene and the minute dimensions of each strand, this tapering effect was not necessary
for us to achieve a plausible hair geometry.

2.2 Hair Rendering

A major part of our final project involved rendering our hair correctly. We wanted to use a physically-
based method that would accurately create the complex highlights seen in natural hair and fur. During
our literature search, we looked at the Kajiya Kay and Marschner models [1] [2]. After reading the
papers, it became clear that the Marschner model would give us the complicated highlights we were
looking for, at the cost of implementation complexity.

2.2.1 Marschner Model

The Marschner model consists of three main terms: R, TT, and TRT. In these terms, R stands for
reflection and T stands for transmission. The following diagram from [2] explains these terms in the
context of the cross-section of a hair fiber:

TRT (p=2)

Figure 2: R, T'T, and T RT terms of a circular cross-section of a fiber

As the diagram shows, these terms arise from the interaction of an incoming ray into the hair fiber.
The hair reflects some light, which is the p = 0 or R case, transmits twice, which is is the p =1 or TT
case, or transmits, refracts, and then transmits, which is the p = 2 or TRT case. The angles v; and ~;
are a function of the incidence of the incoming ray, and the index of refraction n of the hair fiber. The
TT and TRT terms will attenuate light as it transports through the hair, giving the TT and T RT terms
the color of the hair. Because the R term does not go through the hair, it will be the same color as the
incoming light. For brevity, we omit the equations that describe how to find these terms, and instead
refer the reader to [2].

The above description presents a simple model in two dimensions. However, we can generalize the
model to 3D using the Bravais index, as described in the paper. To do so, instead of using 7, we use
7’ and 7", which are derived from the longitudinal angle of incidence 6 of the ray using the following
formulas:

2 _sin? 6 n?cos

,n'(0) =

/0 — 77 e —
7 cost n% — sin” @

Finally, we needed to account for the fact that hair is not actually a cylinder with a circular cross-
section, but instead has an elliptical cross section. Thus we need to account for the eccentricity of the
hair start. As the paper describes, we approximate the eccentricity by using n* instead of 1, where n* is
a function of eccentricity a and the half-angle ¢y, as described in [2].

Implementation of the Marschner model was quite complicated, and we initially struggled with the
concepts in the paper. Our main confusion was about whether we would have to create a new subsurface
scattering integrator, or if we could instead just use a standard BSDF. We missed the fact that the paper
approximates the hair fiber to be very thin. Therefore, we were able to consider each ray as coming from
the same point and integrate over a sphere, which was very similar to a standard BSDF.

After we passed our conceptual hurdles with understanding the Marschner model, we ran into several
bugs in our code. Our initial implementation did not handle several edge cases (that were not explicitly
defined in [2]) that caused numerical blowup, leading to extremely bright “speckles” in the fur, as shown
in Appendix [A]

We realized that for the p = 2 term, we needed to regularize the angle ¢ to some offset of 27 due to
the polynomial approximation from the paper we were solving. Otherwise, the Npgp term would not
properly smooth out/dampen the caustics. Once we normalized all our angles, we were able to remove
these speckles and get some realistic highlights.

One difference between our implementation of model and that described in the paper is that the paper
integrates each term over the entire sphere, whereas we only integrate over a particular hemisphere per
term. That is, we integrate over the same hemisphere as the incoming light ray for the R and T RT
terms, but integrate over the opposite hemisphere for TT" term. We originally thought that if we used
a BTDF for the TT term, pbrt would automatically integrate over the correct hemisphere. However, we
found that this was not exactly the case, so we had to override the various sample functions to sample
light in the correct hemisphere.

2.2.2 Wet Hair

We were very intersted in rendering wet hair (e.g. the portions of the bear’s hair that are near to or
submerged beneath the water line) differently than dry hair, to emulate the real world. Conceptually,
adapting the Marschner model to render wet hair involves both modifying the geometry of the hair (e.g.
clumping some of the fur) and using a different rendering scheme that demonstrates the brighter specular
area of the wet hair as well as darker shadows due to internal reflections, according to [3]. Owing to
time constraints, we used the same Marschner model for wet hair except for changing the underlying
fur texture to make the hair look darker with more specular highlights. The new wet hair texture is
modified by applying darkening filters and adding more highlights in Photoshop.

Figure 3: Dry hair(left) vs. wet hair (right).

The actual diffuse color used in a Lambertian BxDF is the result of an interpolation of the dry hair
and wet hair, based on the height of the intersection point in the world space. The hair on the bear’s
legs, and the lowermost portions of its body, subtly show our wet hair effect, in contrast to the dry hair
on the rest of the bear.

3 Water Simulation and Rendering

3.1 Modeling and Simulation

The physically-based water surface is a key component of our overall scene. To generate physically-
based water, we needed to use fluid simulation. Fluid simulation is a rich field of study; for our project,
we wanted a fluid simulation technique that combined physical accuracy with modeler-friendly efficiency.
Grid-based Navier-Stokes solvers are computationally demanding and more difficult to artistically direct;
particle-based fluid techniques are cheap but suffer from less realistic or visually plausible results. Thus,
in order to achieve our goal of combining accuracy and efficiency, we used Maya’s built-in Bifrost fluid
simulation framework for our project.

Bifrost uses the FLIP method to simulate fluid. FLIP largely resembles particle-based methods,
but it has many nice additions, such as mass conservation, that make it a strong choice for graphics
applications. Using FLIP methods for incompressible flow in graphics was pioneered by Robert Bridson
in [4] and has remained very popular since then. Among the benefits of FLIP, “The FLIP method and
its variants achieve a near total lack of numerical diffusion in the transport stage of the fluid simulation,
since all quantities are advected on particles as opposed to a grid” [5]. For our purposes, FLIP is also a
good choice due to its tight integration into Maya via the Bifrost framework [6]. Due to this integration,
we are able to use artistic license with the fluid simulation results.

Within Maya, we added several rectangular prisms that we set as “emitters” from the Bifrést menu.
These emitters were placed strategically to get visually appealing results (we had to try several variations
in order to get the desired amount of water in different places in the river). We added the other major
components of our scene — rocks, the bear’s body, and the ground planes — as “colliders,” meaning that
any FLIP particles bounce off those objects rather than penetrate them. Finally, since particles still
managed to escape our scene geometry, we added a “killplane” that deletes any particles that fly too
far below the scene geometry. (Adding the killplane provided noticeable performance increases for the
simulation.)

The particle results we obtained from Bifrost were aesthetically pleasing. However, to create results
usable in pbrt, we had to generate a mesh based on the fluid particles, then export that mesh to a pbrt-
compatible format. Bifrést has a built-in tool to generate a fluid mesh from particle results; however,
we found that the fluid meshing tool performed poorly, despite numerous attempted configurations and
relatively high-resolution particle results. Specifically, the automatically-generated mesh often contained
noticeable holes. Moreover, some regions of the river seemed to be completely ignored by the meshing
tool, despite many particles being present. Finally, some small areas of the mesh (especially near col-
lisions, like around the bear’s legs) contained folds and self-collisions, which made the rendered water
too opaque and less realistic. To surmount these problems, we manually repaired some features of the
mesh (e.g. deleting faces where folds occurred) and instanced copies of our foreground fluid mesh in the
back of the river (where the meshing tool seemed to ignore). These approaches allowed us to successfully
overcome the deficiencies of the Bifrost meshing tool.

After the Bifrost simulation and post-processing, we attempted to render our mesh in our scene. We
found that meshing artifacts were overly apparent (it was easy to tell that the water was a triangulated
surface). Thus, we returned to Maya and used the mesh smoothing tool to perform one iteration of
subdivision on our fluid mesh. This made the mesh resolution sufficiently fine that mesh artifacts were
no longer apparent in our final result.

Once we obtained our final fluid mesh, we exported it from Maya as an obj file, which we then
converted to a triangle mesh in pbrt format using the obj2pbrt tool.

3.2 Rendering

The human eye is skilled at determining whether food or drink is “real.” Thus, realistic rendering
of water is a significant challenge for graphics. We were inspired by several graphics papers for water
rendering: [8], [@], [10], and [II]. Ultimately, due to time constraints, our model for water rendering was
relatively rudimentary; however, we were able to achieve artistically pleasing results and could easily
substitute a more rigorous rendering model in the future.

In pbrt, our water surface is represented by instances of the TriangleMesh class. The core of our
rendering technique is shading these meshes using pbrt’s mix material. For our mixture, we combine
pbrt’s glass material type with the uber material type. The former provides refraction and specular
highlights, while the latter provides colored diffuse reflection and translucency. We needed the glass
material to obtain refraction since the uber material does not refract light opacity values less than one
(note: we used the physically correct index of refraction for water, 1.33). Similarly, we needed the uber
material since the glass material does not support color or opacity properties. By combining these two
materials and carefully setting each of their properties, we obtained a physically plausible water material.

When we rendered our scene with the water included, we noticed that the water surface seemed to lack
a certain vitality or turbulence. The water seemed too smooth given that the mesh represents an active
river and a large creature is presumably wading through the water (causing significant deformations in
the flow). Furthermore, we were not satisfied with the specular reflections of the moon light coming
off the water. To enhance the visual quality of the water, without compromising the structure of the
physically-based mesh, we applied a bump map to the water. The bump map affects computed normals
for points on the face of each triangle, which produces noticeably different reflections in the overall

Figure 4: The bump map applied to the water meshes in our scene. The bump map is scaled and

deformed to fit onto each face of each triangle mesh. Using the bump map for our water surface yields
visually improved turbulence and reflections.

Figure 5: Before (left) and after (right) applying a 1 pixel-wide filter to our output image. The filter
successfully eliminates small, spurious specular highlights (white) without impacting the overall image.

rendering. We show in Figure the bump map we used, which is stretched to fit onto each face of each
triangle mesh.

We observed one additional problem with our water surface. The raw output image from pbrt had
very small (one or several pixels wide) specular highlights on the water surface that appeared to be
spurious. These specular highlights came from the two area lights in our scene interacting with the
glass component of our mixed material for the water. We surmise these were due to improper normal
information for the triangle meshes or overly strong area lights. While further adjusting the area light
settings in our pbrt scene is one valid approach for alleviating this problem, due to time constraints, we
found a rudimentary solution that successfully fixed the spurious specular highlights. We applied the
Minimum filter in Photoshop to the pbrt output image with a radius of 1 pixel. This means that for
each pixel 7 in our final image, we look at the one-ring of pixels around ¢ and set the value of ¢ to be the
minimum of ¢ and the minimum value over the one-ring. The qualitative effect of this single-pixel-wide
filter, as described in [I2], is “applying a choke (erosion)—shrinking white areas and spreading out the
black areas.” We show in Figure [3.2] a comparison of a small portion of our image before and after
applying this filter, demonstrating the elimination of spurious, tiny specular highlights. In the end, the
effect was quite minor, but helped the image be more well-composed.

4 Scene Design and Construction

We designed and constructed the scene, including texturing and lighting, in Maya. The scene geom-
etry is composed of: several small rocks on the left near the camera and several large stony edifices on
the far side of the river; five trees spread width-wise and depth-wise throughout the scene; several small
bushes and rocks in the background; two planes composing the visible portion of a skybox; and the bear

and water meshes. We obtained the models from TurboSquid¢om.

The geometry, except for the bear and skybox planes, came textured (however, we needed to manually
make a number of edits in our pbrt files to correctly process the alpha masks that came with the models’
textures). For the bear, we used a very low-resolution texture on the body of the bear that at least was
brown and variegated (this texture is almost entirely obscured by the rendered fur). For the skybox, we
found an image at [13] and used a Python cube map script (adapted from a StackOverflow solution) to
generate cube map pieces from the equirectangular source image.

We use one spherical area light to illuminate the skyboxes; this area light is placed far behind and
above the main portion of the scene. We also use one area light as the “moon,” placed above and to the
right of the bear. We experimented with using an environment map for our scene, but we found that
the environment map drastically reduced the visibility of the different reflection terms in the bear’s fur.
Finally, as discussed in the next section, we use a global scattering volume to simulate a fog effect.

One trick we discovered when exporting from Maya to pbrt was that “freezing” the transformations
in Maya allowed us to obtain correct transformations when objects were rendered in pbrt. For exporting
to pbrt, we used a combination of the pbrtMayaPy Maya plugin [I4] and Maya’s built-in obj exporter
tool (which also exports a corresponding mtl file for the texture information). For obj output, we use
obj2pbrt to finally convert into pbrt format.

5 Miscellaneous

5.1 Camera

We use a perspective camera with the effect of depth of field. Depth of field centers the audience’s
attention to the bear and the firefly, while blurring out the less refined objects in the background (e.g. the
trees and the riverbank). We achieve depth of field by setting a non-zero lens radius for the perspective
lens in our pbrt scene file.

5.2 Volumetric Fog

Since the lighting of the scene is mainly due to a spherical area light (the moon) above the bear, the
whole scene appears to be too bright to be real. Also, given the fact that there is usually a layer of fog
above a river (due to water evaporation), we chose to add a global scattering volume whose intensity
decreases exponentially with respect to the height. This effect simulates a global fog in the environment
and helps make the lighting for the scene more realistic.

5.3 Surface Integrator

With the moon light being the only main light in the scene, we used pbrt’s direct lighting surface
integrator as our surface integrator of choice. Direct lighting gives a good balance of rendering time and
result quality, especially in the shadowy regions underneath the bear.

During the course of our experimentation, we tested other integrators that provide global illumination,
such as path tracing and the metropolis renderer. However, the resulting images often contained lots
of noise due to the poor sampling of the huge number of light transport paths. This issue is especially
magnified in an open-world scene with large light sources since the number of paths that needs to be
sampled has significantly increased. On the other hand, we also want to keep the lower body of the
bear darker to emulate the wet hair effect. While the metropolis renderer provided sufficiently de-noised
results, the global illumination added to the scene was displeasing. In the end, direct lighting provided
the best performance while also giving us a pleasant overall look for our scene.

5.4 The Daring Firefly

To add liveliness to the image (and also make the bear less lonely), we put a glowing firefly close to
the nose of the bear. We find the mutual gazing between the firefly and the bear adds lots of meaning
into the image. In the scene description, the firefly itself is simply a spherical area light. To create
the glowing aura of the firefly, we made use of pbrt’s volumegrid that lets us define the density of the
volumetric substance over a 3D grid. The grid is generated based on each cell’s distance to the center,
with a quadratic decay.

When creating the firefly, we originally had more than one firefly. However, the image looked un-
natural because we didn’t have the volumetric scattering effect for the fireflies. Unfortunately, once we
figured out how to use the volumetric scattering effect, we did not have enough time to place all the
fireflies, and settled on a single firefly. A sample image with multiple fireflies, without the volumetric
lighting, is in Appendix [A]

6 Performance Considerations and Timing

To accelerate the rendering of our scene, we used a bounding volume hierarchy with up to seven
primitives allowed per node in the tree. We use the default surface area heuristic for partitioning the
primitives when building the tree. We found that the bounding volume hierarchy greatly accelerated
our results; we did not compare to other acceleration structures, such as kd-trees, since we achieved
satisfactory performance with our bounding volume hierarchy.

We ran our renders on a local machine with two ten-core Intel Xeon E7-2860 processors, each core
running at 2.27GHz. With this processing power, we were able to generate our final render at 4K Ultra
HD resolution (3840px x 2160px) in 3675.0 seconds (just over one hour). Our final render was run with 64
samples per pixel; we found that further increasing samples per pixel yielded no noticeable improvements
in the output image.

7 Individual Contributions

Although this project was a collaborative effort, we had a “split” of tasks assigned among the group
members. David handled the modeling of the bear, fur, rocks, trees, and the fluid simulation of the
creek (including modeling, simulation, and rendering of the water). Because the Marschner model was
so complex, Tushar and Lingxiao collaborated on implementing and debugging the model. Lingxiao
implemented the firefly, and Tushar implemented the wet hair. All members contributed with parameter
tuning and artistic judgments, and all members collaborated in writing the final report.

8 Final Image

9 Conclusions and Future Work

In conclusion, we successfully implemented our bear scene, including overcoming various modeling
and rendering challenges. We implemented the Marschner model for hair to render the bear’s fur, and
we were able to get nice highlights on the body of the bear. We implemented a firefly using volumetric
scattering to create an aura. We used a fluid simulation to create water geometry, used a mixture of
materials and bump maps to render the water, and created a convincing river scene in Maya. Finally,
we used depth-of-field and volumetric fog effects to add realism to the scene.

Source code, scene files, and high-resolution images for our project and final renders are all available
upon request.

10 Acknowledgments

We would like to acknowledge Pat Hanrahan and Mike Mara for guiding us on the implementation
of our Marschner Model. We would also like thank our friends for critiquing intermediate images and
guiding us towards the artistic direction of the final shot.

11 References

References

[1] Kajiya, James T., and Timothy L. Kay. “Rendering fur with three dimensional textures.” ACM
Siggraph Computer Graphics. Vol. 23. No. 3. ACM, 1989. http://www.cs.virginia.edu/~mjh7v/
bib/Kajiya89.pdf

[2] Marschner, Stephen R., et al. “Light scattering from human hair fibers.” ACM Transactions on
Graphics (TOG). Vol. 22. No. 3. ACM, 2003. http://graphics.stanford.edu/papers/hair/
hair-sg03final.pdf

[3] Gupta, Rajeev, and Nadia Magnenat-Thalmann. “Interactive rendering of optical effects in wet hair.”
Proceedings of the 2007 ACM symposium on Virtual reality software and technology. ACM, 2007.
http://nishitalab.org/user/witawat/resources/papers/wetHair_pg2012.pdf

u, Yongning, an obert Bridson. nimating sand as a fluid. ransactions on Graphics
4] Zhu, Y« i d Robert Brid “Ani i d fluid.” ACM T i Graphi
(TOG) Vol. 24 No. 3. ACM, 2005.

[5] Seymour, Mike. “The Science of Fluid Sims.” fxguide, 2011. https://www.fxguide.com/featured/
the-science-of-fluid-sims/

[6] “Bifrost Overview and Concepts.” Maya User Guide, 2014. https://knowledge.autodesk.
com/support/maya/learn-explore/caas/CloudHelp/cloudhelp/2015/ENU/Maya/files/
GUID-43D655E2-45A3-4FD8-847C-6622AF22995C-htm.html

[7] “Create Hair, Fur, Or Instanced Geometry.” Maya User Guide, 2016. https://knowledge.
autodesk.com/support/maya/learn-explore/caas/CloudHelp/cloudhelp/2016/ENU/Maya/
files/GUID-C8B2F14C-192B-40D9-BDC2-5F5A87B34BC8-htm.html

[8] Enright, Douglas, Stephen Marschner, and Ronald Fedkiw. “Animation and rendering of complex
water surfaces.” ACM Transactions on Graphics (TOG) Vol. 21 No. 3. 736-744. ACM, 2002. http:
//kucg.korea.ac.kr/seminar/2002/src/pa-02-43.pdf

[9] Mitchell, Jason L. “Real-time synthesis and rendering of ocean water.” ATI Research Technical
Report 121-126. ATI, 2005. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.
9112&rep=repl&type=pdf

[10] Iglesias, Andres. “Computer graphics for water modeling and rendering: a survey.” Future genera-
tion computer systems Vol. 20 No. 8. 1355-1374. 2004. http://www.sciencedirect.com/science/
article/pii/S0167739X04001013

http://www.cs.virginia.edu/~mjh7v/bib/Kajiya89.pdf
http://www.cs.virginia.edu/~mjh7v/bib/Kajiya89.pdf
http://graphics.stanford.edu/papers/hair/hair-sg03final.pdf
http://graphics.stanford.edu/papers/hair/hair-sg03final.pdf
http://nishitalab.org/user/witawat/resources/papers/wetHair_pg2012.pdf
https://www.fxguide.com/featured/the-science-of-fluid-sims/
https://www.fxguide.com/featured/the-science-of-fluid-sims/
https://knowledge.autodesk.com/support/maya/learn-explore/caas/CloudHelp/cloudhelp/2015/ENU/Maya/files/GUID-43D655E2-45A3-4FD8-847C-6622AF22995C-htm.html
https://knowledge.autodesk.com/support/maya/learn-explore/caas/CloudHelp/cloudhelp/2015/ENU/Maya/files/GUID-43D655E2-45A3-4FD8-847C-6622AF22995C-htm.html
https://knowledge.autodesk.com/support/maya/learn-explore/caas/CloudHelp/cloudhelp/2015/ENU/Maya/files/GUID-43D655E2-45A3-4FD8-847C-6622AF22995C-htm.html
https://knowledge.autodesk.com/support/maya/learn-explore/caas/CloudHelp/cloudhelp/2016/ENU/Maya/files/GUID-C8B2F14C-192B-40D9-BDC2-5F5A87B34BC8-htm.html
https://knowledge.autodesk.com/support/maya/learn-explore/caas/CloudHelp/cloudhelp/2016/ENU/Maya/files/GUID-C8B2F14C-192B-40D9-BDC2-5F5A87B34BC8-htm.html
https://knowledge.autodesk.com/support/maya/learn-explore/caas/CloudHelp/cloudhelp/2016/ENU/Maya/files/GUID-C8B2F14C-192B-40D9-BDC2-5F5A87B34BC8-htm.html
http://kucg.korea.ac.kr/seminar/2002/src/pa-02-43.pdf
http://kucg.korea.ac.kr/seminar/2002/src/pa-02-43.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.9112&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.9112&rep=rep1&type=pdf
http://www.sciencedirect.com/science/article/pii/S0167739X04001013
http://www.sciencedirect.com/science/article/pii/S0167739X04001013

[11] Liang, Jianming, Gong, Jianhua, and Li, Yi. “Realistic rendering for physically based shallow water
simulation in Virtual Geographic Environments (VGEs).” Annals of GIS, Vol. 21 No. 4. 301-312.
2015.

[12] Filter Effects Reference. “Photoshop Filter Effects Reference”. N.p., n.d. Web. 07 June 2016. https:
//helpx.adobe.com/photoshop/using/filter-effects-reference.html#other_filters

[13] Mt Dale Comms Tower at Night. Flickr. Yahoo!, n.d. Web. 07 June 2016. https://www.flickr.
com/photos/8380845@N06/17172435186/

[14] Volodymyrk. Volodymyrk/pbrtMayaPy. GitHub. N.p., n.d. Web. 07 June 2016.https://github.
com/Volodymyrk/pbrtMayaPy

Appendices

A Intermediate Images

Figure 6: Bear with a simple diffuse model for rendering hair

10

https://helpx.adobe.com/photoshop/using/filter-effects-reference.html#other_filters
https://helpx.adobe.com/photoshop/using/filter-effects-reference.html#other_filters
https://www.flickr.com/photos/8380845@N06/17172435186/
https://www.flickr.com/photos/8380845@N06/17172435186/
https://github.com/Volodymyrk/pbrtMayaPy
https://github.com/Volodymyrk/pbrtMayaPy

Figure 7: Bear with speckling bug in Marschner model

Figure 8: Bear with multiple fireflies without volumetric scattering

11

File Edit

Polygons

Attribute Editor

3bifrostliquid1Mesh

1op3 12

¥ Transform Attributes

10yp3 ANqUAY

4bifrostLiquidTMesh
stLiquidMesh X ; 2 > Pivots
3 ¢ > Limit Information

Notes: water mesh 3:bifrostLiquid1Mesh

Select Load Atributes Copy Tab
470 I« < i€ 4> »ipl»

No Anim Layer

1(s). Cirl+ MMB s als. Use D or INSERT to change

Bear_body

Modifier List

Polygon
Element

Named Selection Set
Copy

» Tools
v Styling
Finish Styling
Selection
BoxMarker v
Selection Utilities
24 2% 8 30 32 3 o
Grid = 0.0cm Auto Selected ASRNCURR T S [N
+<>/ SetK. 7 Filters... © 0 16> RZ

Add Time Tag

Figure 10: The guide hairs (orange) for our bear (black and white mesh) as seen in 3ds Max. The green
crosshairs represent one of the grooming tools. The guide hairs in this image have been styled in an
extreme way to emphasize the artist directability of the hair in 3ds Max. With these guide hairs, 3ds
Max generates a dense fur mesh as seen in our final images.

12

	Introduction
	Hair Modeling and Rendering
	Hair Modeling
	Hair Rendering
	Marschner Model
	Wet Hair

	Water Simulation and Rendering
	Modeling and Simulation
	Rendering

	Scene Design and Construction
	Miscellaneous
	Camera
	Volumetric Fog
	Surface Integrator
	The Daring Firefly

	Performance Considerations and Timing
	Individual Contributions
	Final Image
	Conclusions and Future Work
	Acknowledgments
	References
	Appendices
	Intermediate Images

