
How do we model metallic glint and steam? Our goal for this project was to produce a scene inspired by the
one below with a scratched metal kettle, brushed metal cup, and steaming tea.
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Specular surfaces with textures like brushed metal or metallic lacquer have complex “glinty” appearances
under sharp lighting. Rendering this effect is difficult because the energy is concentrated in tiny highlights, and
capturing this detail through Monte Carlo sampling is prohibitively expensive. For this project, we extended
PBRT to render specular microstructures with an efficient algorithm introduced in Yan et al.

One way to render microstructures is with the Torrance-Sparrow microfacet model. This model describes
surfaces as a probability distribution of microfacets that reflect light in different directions. The microfacet BRDF
accounts for Fresnel reflectance ( ), self-shadowing ( ), and probability distributions over surface normals (

):

Typically, the microfacet normal distribution functions  only depend on , the half vector between the
incoming ( ) and outgoing ( ) light directions. However, with textured surfaces like brushed or scratched
metal,  also depends on the position  on the surface. We load these 4-dimensional position-normal
distribution functions as normal maps that specify normal directions  for every 
coordinate.

Rendering Brushed Metal
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Pixel Footprints



Surfaces like scratched or brushed metal feature sub-pixel texture highlights that can’t be captured effectively
with importance sampling. Yan et al. handle sub-pixel details by integrating the position-normal distribution
function over a pixel’s footprint  on the surface’s  coordinate system. They model this footprint with a
Gaussian , which later leads to nice simplifications.

Because PBRT does not model Gaussian footprints, we compute them from the SurfaceInteraction’s , 
, , and  parameters. We think one natural way to do this would be to find the closest

symmetric positive definite approximation to , and make that the covariance matrix  for our

Gaussian. The intuition is that  and  should represent the two axes of the Gaussian ellipse,
except the axes need to be orthogonal by definition of the covariance matrix. We could not find a closed form
solution to this convex optimization problem for  matrices, so for efficiency and simplicity, we came up
with an approximation.

Let  be the larger vector out of  and , while  is the smaller one. We set the Gaussian’s

major axis  to be , scaled such that the Gaussian extends to the magnitude of  at two standard
deviations. We then set the minor axis  to be ’s orthogonal projection to , scaled in the same manner.

Finally, we construct the covariance matrix , where  and 

. The mean of the Gaussian is simply the  coordinates of the SurfaceInteraction,

and the Gaussian is scaled by  to integrate to 1.

Yan et al. actually construct 16 subpixel Gaussian footprints for pixels subdivided into a  grid. However,
we found that using whole pixels gave us sufficient detail for our images.

According to Yan et al., the position-normal distribution function of pixel footprints can be defined:

Where  is the projection of the microfacet half vector on the unit disk,  is the location of the
reflection on the object’s surface, and  is the texture normal specified by the normal map. Intuitively, this
equation finds how many  locations over the pixel footprint  contain the desired normal , and returns
that as a probability. In practice, we need to replace the delta function with a Gaussian instead to avoid issues
with sampling and singularities:
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P-NDFs as a Sum of Gaussians
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The Gaussian  over the unit disk in  normal space introduces “roughness” to our material. By our
intuition, this equation finds all the normals close to the desired normal  within the pixel footprint .  can be
thought of as a 4D function, Gaussian over  and highly varying over . Yan et al. show that integrating
this highly varying, high dimensional function by straightforward Monte Carlo sampling fails. To get around this
issue, they approximate  with a sum of 4D Gaussians:

Now that all the terms are nicely Gaussian, it is possible to find a closed-form solution for this integral as a
simple sum. Yan et al. do not write out this solution in its full form, but after some work (actually a lot of work),
we find:

Where  is the interval between Gaussian elements in  space (which we specify as a parameter in 
files),  is a scaling factor, and  is a covariance matrix. Defining each term explicitly takes a full page of
equations, so we are also leaving it out in this writeup. Equation (21) in Yan et al. contains a typo that is fixed
above.

To create the normal map for brushed metal, we generated a  pixel height map with uniform
grayscale noise. We chose uniform noise over Gaussian because the abrasive pad used to brush metal likely
creates grooves at a certain regular depth. Gaussian noise would imply that most of the surface lies at a mean
height and grooves/mountains tend to stay shallow. We then stretched the height map to a 
image and used Photoshop’s 3D normal map generation function to produce a normal map like the following
(cropped):
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A  image with a Gaussian element interval size of  texels means there are over 16
million Gaussian elements  with tiny standard deviations and enormous scaling factors to integrate to 1. The
pixel footprint Gaussian  tends to have large standard deviations and small scaling factors, since its
covariance is defined by pixel differentials in texel space. This results in floating point operations with many
large and small numbers (ranging from 1e-20 to 1e20), and was a conditioning nightmare.

The first step was to do as many of the floating point operations as possible in log space. Luckily, all of the
Gaussians could be converted quite easily. The second step was to do some algebra with the equations to
keep the magnitudes of the numbers around the same order, particularly for matrix multiplications. Third, we
clip values and return early whenever numbers become too small or too large. Finally, we decided to scale the
texture space defined over the range  to the resolution of the image , which helps
prevent numbers from becoming too small. Figuring out how to scale the Gaussians, integrals, and Jacobians
accordingly was difficult.

For importance sampling, we simply take the normal from the normal map at the given SurfaceInteraction 
 coordinate, and perturb it by a Gaussian with standard deviation given by  on the unit disk. Yan et al.

implement an alternative importance sampling method on the Gaussian mixtures directly, since some of their
textures don’t rely on normal maps. They also use an acceleration hierarchy for speedup, but we found that
simple bounding boxes on the pixel Gaussians was sufficient.

This was one image generated with conditioning issues even after converting to log space, clipping large
values, and scaling the texture space. The white specks are a result of exploding numbers. This was only
solved by rearranging the matrix algebra to group terms of similar orders. The texture used was 
and contained Gaussian noise on top of the brushed patterns.

Implementation in PBRT
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Brushed metal cylinder generated with a  normal map, Gaussian element step size of 0.5 texels,
and roughness Gaussian standard deviation of 0.2.

Efficient sampling of participating media is important for creating high quality images with path tracing. PBRT’s
current medium sampling method uses distance sampling, which focuses more samples closer to the camera
than ones farther away. While this works well for scenes with lights that are removed from the volumes, it is
less effective for scenes where the lights are embedded in the volumes and in view of the camera. Kulla et al.
proposed an importance sampling method called “equi-angular sampling,” which “focus[es] more samples
where the incoming light is strong.”

2048 × 2048

Rendering Steam

Homogeneous Media



For a given ray passing through a homogeneous medium and a point light, the method re-parameterizes t such
that “the origin is at the orthogonal projection of the light onto the ray. The integration bounds a and b represent
the boundaries of the homogeneous medium (see figure below). 

Then, according to this new parameterization of the ray, we can use the following sampling function and

normalized pdf over the interval [a, b]: 

We created a new Medium class for equiangular sampling in homogeneous media. The Medium::Sample()
function takes in a ray and a pointer to a MediumInteraction and returns an associated weight for the final
radiance (Section 15.2 in textbook).

Upon receiving a ray, we first sample an exponential distribution defined over [0, inf), similar to 15.2.1 in the
textbook, to see if we have a medium interaction. If the sampled position along the ray is beyond the medium
boundary, then we register a surface interaction and return the corresponding weight (transmittance / pdf). If
the sampled position is within the medium boundary, then we sample another position using the equiangular
sampling method. The t value of this final position is then stored in the MediumInteraction for the integrator to
handle. One challenging part of implementing this section is figuring out the correct weight to return. The
transmittance could be computed easily for the homogeneous media. As for the pdf of the final sampled
position, since we sampled an exponential distribution before sampling the equi-angular distribution function,

Implementation in PBRT & Challenges



we had to normalize the equi-angular pdf with the exponential distribution pdf.

Another challenge in implementing this section was getting the positions of the point lights. Medium classes in
PBRT do not have access to lighting information by default, so we created another integrator that copied most
components of the VolumeIntegrator, but also passed in light information to Medium::Sample().

The following images were run with 256 samples/pixel, with PBRT’s original homogeneous medium class (first)
and our new homogeneous medium class using equiangular sampling (second). 

 



The above method could be extended to heterogeneous media as well. According to Kulla et al., their method
could be used with decoupled ray marching:

Where we can divide the ray into small segments that are assumed to be homogeneous. Kulla et al. also

Heterogeneous Media



suggest building a per ray data-structure that stored the , , and  of each segment  throughout the
ray; that way the transmittance values could be looked up with a O(log(n)) binary search for each shadow ray
that’s traced.

PBRT’s heterogeneous medium class uses delta tracking over a 3D grid of volume density values. We created
another heterogeneous medium class based on this class, but used ray marching instead. However, PBRT’s
volume integrator does not trace multiple shadow rays for a ray that goes through a medium. Instead, it takes
one sample per ray via Medium::Sample() and continues to trace more rays from that sampled position. If the
sampled position was a medium interaction, the volume integrator spawns a ray in a direction sampled by the
phase function. If the sampled position was not a medium interaction, then the ray registers a surface
interaction and spawns a ray from the surface. Since at most one shadow ray is traced per ray, it did not make
sense to store an entire array of transmittance values as suggested in the paper in PBRT. Hence, we directly
computed the transmittance of the sampled position via ray marching for calculating its weight.

Our Medium class also takes in a 3D grid of volume density values. In ray marching, we’d compute sigmasi
and sigmati for each segment by multiplying the overall sigmat and sigmas by the density value for that
segment. The density value of a location in the grid is computed by trilinear interpolation.

We extended our custom integrator to uniformly sample a light in the scene, and then uniformly sample a
position on the surface of the light before passing it into the Medium::Sample() function. We implemented equi-
angular sampling with respect to the location of the sampled light surface. Point lights and triangular area lights
are supported. As equi-angular sampling involves computing angles with light sources, it does not work with
infinite lights. So our integrator ignores infinite lights when sampling light positions to pass into
Medium::Sample().

While equi-angular sampling works well for heterogeneous media with embedded light sources, it does not
work as well for heterogeneous media when the light sources are outside of the volume. In section 4.2 of the
paper, Kulla et al. suggested using another discrete density PDF to distribute samples within the medium.
Figure 8 of Kulla et al’s paper shows examples of when equi-angular sampling works better than discrete
density, and vice versa. Due to time constraints, we were not able to implement this part of the paper.

One bug we ran into when implementing the equi-angular method was seeing a dark border around the steam.
This occurred because some of the sampled positions in the volume grid had zero density, meaning that the
scattering coefficient for the sampled position was zero. Hence, this sample yielded a weight of zero
(transmittance * scattering / pdf), and subsequent bounces from this sample was classified as having zero
contributions to the final radiance. While the zero contribution is technically correct, samples such as these are
not medium hits and should not have a MediumInteraction created. This was fixed by checking the density of
the sampled position before returning. If the density was zero, then we do not register a medium hit.

σs,i σt,i (t)Ti i
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The following images were rendered with 64 samples/pixel using this scene (updated); PBRT’s method (first)
and equi-angular sampling (second). The equi-angular sampling method captures the embedded light source
better than PBRT’s delta tracking method. The contrast is better shown in .exr format (see here & here).

 

https://www.dropbox.com/s/awn55smcopfp5kl/equiangular-hetero-write-updated.pbrt?dl=0
https://www.dropbox.com/s/hpz0088v15zl3uy/equiangular_scratches_grid_pt-64.exr?dl=0
https://www.dropbox.com/s/ikdri6ak7r6zfke/equiangular_scratches_equi_pt-64.exr?dl=0


We made all of the models in our scene using Blender and exported the scene to PBRT using Cinema4D.

We started constructing our scene by modeling the teacup: it is the simplest model in our scene and the main
focus of the image. To create the mesh, we traced the cross section of a teacup from a reference image and
spun it 360 degrees, and we subdivided the mesh twice. The UV map was created so that the inside, bottom,
and outside surface are connected components. This would ensure that our scratched metal texture runs
seamlessly along the side of the cup.

The table was inspired by this picture of an oriental tea tray. Rectangular cubes were created for each of the
wooden beams that make up the tray. Their edges were beveled and randomly rotated slightly to add more

Simulation and Modeling

Modeling
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realism to the scene. The cylinders that run across the tray were created with Blender's array operator, which
duplicates a mesh to your specifications. The cylinders and the rest of the table are treated as separate objects
due to the difference in the geometry.

The teapot started off as a normal cup during the initial stages of our scene. Adding a spout to the scene
proved to be complicated; surely there is a better method that we did not attempt. We spun the spout to create
a cylinder, and then we used Blender's proportional editing features to sculpt the shape of the spout.
Connecting the spout to the main body of the teacup, we realized that this method would not work visually
since there was a discontinuity in the connection between the spout and the body. We solved this issue by
using Blender's Boolean operator to compute the union of the two meshes, decimating the joined mesh, and
subdividing the new mesh. This resulted in a mesh with few visible artifacts between the spout and the body.

The tea was simulated using Blender's fluid simulation system to achieve the most realism. Blender uses the
Lattice Boltzmann Method. Simulating the fluid on a grid of width 500, we have an icosphere set to inflow near
the spout and a cube set to outflow inside the cup, and we give the inflow a bit of initial velocity. After baking
the fluid with 1e-6 viscosity, we obtain plausible water. Noticing that the water was not quite as realistic, we
rotated it to be more vertical and placed it in the correct position manually, and then we subdivided it twice.

Final Image 

Brushed metal has poor conditioning with point lights, often producing black and white images due to
oversaturation. It works best with environment maps. Equiangular sampling, however, cannot handle infinite
lights due to its reliance on equiangular sampling, and shines best with point lights. Thus, combining the two in
the same scene poses problems. We had significant trouble balancing parameters to minimize noise in both
the metal and steam. Given more time, we would have liked to create a cohesive scene that showed off both
techniques.

For our final image, we took the best of both worlds. We had both an environment map and several point lights
in and near the steam. The brushed metal in the scene ignored the point lights, and the steam ignored the
environment map.

Teapot

Simulation

Tea

Rendering the Final Image

https://www.dropbox.com/s/u90t3k0qhtgetm0/scene_smoke_128.png?dl=0


Example image of environment map and brushed metal taken away: 

Sean: Implement sampling technique for participating media to efficiently render steam.

Toki: Implement 4D Gaussian mixtures to capture specular microstructure.

Wilbur: Model the scene with Blender / Cinema 4D, run fluid simulations with Blender.
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