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Introduction
For my final project, I was interested in rendering optical metamaterials. Metamaterials are synthetic materials
which can be engineered to have properties not found in nature. The field of transformation optics is concerned with
designing such metamaterials whose microstructure manipulates the propagation of elecromagnetic waves in order
to achieve a specific optical effect, in many cases a coordinate transformation. A good summary of the theory of the
field is available in an overview by Leonhardt et al. [1].

Some of the theoretical effects which can be achieved using materials include perfect cloaking devices, pictured
in figure 1, where light bends around an interior cavity of radius R1. Other theoretical possibilities include negative
refraction materials, and perfect lenses. Although macro-scale implementations of these types of metamaterials
are still out of reach of today’s technology, primarily due to the difficultly in manufacturing with the nanoscale
precision needed for optics, devising a general purpose algorithm for visualizing these materials presents an interesting
computational challenge, which has not yet been addressed by the literature. Here, I will describe an algorithm I
developed as a final project for CS348b: Image Synthesis and display proof-of-concept images which show that the
rendering algorithm I have developed is viable.

Figure 1: A perfect cloaking device wherein light bends around the interior cavity of radius R1.

The Geometry of Light
To be more precise about how optical metamaterials differ from normal materials, in traditional ray optics, paths of
light γ follow the Principle of Least Action, extremizing the Lagrangian

L[γ] =

∫
γ

η ds =

∫
γ

η
√
dx2 + dy2 + dz2 , (1)

where η(x) is the index of refraction of a material. One can think of the light as travelling through a isotropically
deformed space, where η(x) is the local scaling factor at position x. Light then travels the shortest distance path
between the endpoints of γ in this deformed space. The key difference between normal ray optics and transformation
optics is that transformation optics allows more general local deformation of space. The distortion is given by a 3D
Riemannian metric gµν(x) which results from the nanoscale properties of the material. Think of gµν(x) as a 3 × 3

symmetric positive definite matrix at each position x in space such that
√
vT gv is the length of an infinitesimally
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small vector v at x. The Principle of Least Action then says that the paths of light γ should extremize the Lagrangian

L[γ] =

∫
γ

√
gµν dxµ dxν , (2)

L[γ] =

∫
γ

√√√√ 3∑
µ=1

3∑
ν=1

gµν(x) dxµ dxν , (3)

where we are using Einstein notation – there is an implicit sum over µ and ν under the square-root. Applying the
Euler-Lagrange equations to L yields the geodesic equations when the metric gµν is smooth,

d2uµ

ds2
= −Γµαβ

duα

ds

duβ

ds
, (4)

where uµ(s) is a parameterization of the curve γ (called a geodesic) in the variable s. Here Γµαβ(x) are the Christoffel
symbols of the Levi-Civita connection induced by the metric gµν(x), defined by

Γµαβ =
1

2
gµm (∂βgmα + ∂αgmβ − ∂mgαβ) (5)

where gµν(x) is the inverse of gµν(x) at x. Hence inside an optical metamaterial which implements the smooth metric
gµν , light propagates along the paths given by the Geodesic equations (4). A pictorial example can be seen in figure
2. I want to design and implement an algorithm for rendering a metamaterial in a region Ω with prescribed metric
gµν(x).

Figure 2: Propagation of a light ray µµ(s) through a metamaterial.

We note that oftentimes, these metrics derive from certain coordinate transformations, as performing a coordinate
transformation can be thought of as “bending space” and has an associated metric gµν(x) (the pushforward of
the Euclidean metric). As an example, consider figure (3). This figure shows a coordinate transformation which
implements the perfect cloaking device seen in figure (1). We see that the ambient space is bent in such a way that
it distorts the space and guides paths of light around the central cavity, thereby rendering the cavity invisible.
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Figure 3: A coordinate transformation which implements the cloaking device, seen in figure (1), note how the
geodesics curve around the interior cavity.

Previous Work
There seems to have been some small amount of work in the area of visualizing metamaterials [2, 3, 4], however, the
ones I have seen are all for visualizing very specific metamaterials, and none provide a general purpose algorithm.
There is also similar existing work on rendering where the index of refraction η(x) varies throughout a material, or
throughout the atmosphere. One can think of this new problem as a sort of generalization of this, as the former
amounts to setting the metric gµν(x) = η(x)2δµν where δµν is the Euclian metric (i.e. identity matrix). There has
also been work done on rendering black holes, most notably in the movie Interstellar [5]. The problems are similar,
but the work done in [5] revolves around solving for null curves, where gµν dxµ dxν = 0, for a very specific metric
gµν , the Kerr metric for rotating black holes. There are also other auxiliary considerations which don’t need to be
considered in the metamaterial setting, such as red/blue shift from gravitation. Conversely, in the metamaterial
setting, there are problems which one doesn’t have in the black hole setting, such as how to handle intersection with
geometry.

My Proposed Rendering Algorithms
I propose two rendering algorithms for metamaterials with an underlying metric gµν . Everything contained in
the remaining sections is my own original work, and to the best of my knowledge, hasn’t been tried
before.

Coordinate Transformed Distance Estimators
In this algorithm, we suppose we want to render a metamaterial in some domain Ω whose metric gµν comes from
some coordinate transformation Φ : R3 −→ R3. That is,

gµν = (DΦ)µ
α

(DΦ)ν
β
ηαβ (6)

or written in alternate notation,
g = (DΦ)T (DΦ) (7)

where DΦ is the Jacobian of the transformation Φ. This is the transformation of the Euclidean metric under Φ. One
can see in figure (4) that the preimage Φ−1(Ω) has the Euclidean metric, and hence geodesics in Φ−1(Ω) are just
straight lines. This means that in Φ−1(Ω) one can just ray-trace as normal. However, for primitives which are made
up of linear elements (i.e. triangles), we note that they may be nonlinear or distorted in Φ−1(Ω). Fortunately, there
is a very natural way to transform distance estimators.

3



Figure 4: Warping space with a coordinate transformation.

Suppose that we’re given a signed distance estimator f on Ω which estimates the distance from x to the boundary
∂Ω at every point in the interior of Ω. That is, for any point x 6∈ int(Ω) and any point y ∈ ∂Ω, we have

0 < |f(x)| ≤ ‖x− y‖2 . (8)

with f(x) < 0 in the interior of Ω and f(x) > 0 in the exterior. Then, consider the function f ◦ Φ on Φ−1(Ω). For
every y ∈ ∂Ω, we have

0 < −f(Φ(x)) ≤ ‖Φ(x)− y‖2 . (9)

Since Φ is smooth and bijective, there exists a z ∈ ∂Φ−1(Ω) = Φ−1(∂Ω) such that y = Φ(z), so

0 < −f(Φ(x)) ≤ ‖Φ(x)− Φ(z)‖2 . (10)

Using a Taylor expansion, we have that

‖Φ(x)− Φ(z)‖2 = ‖DΦ(x)x‖2 +O(|x|2) ≤ ‖DΦ(x)‖2‖x− z‖2 +O(‖x− z‖22) , (11)

where ‖DΦ(x)‖2 denotes the operator 2 norm of the Jacobian DΦ(x). Therefore

0 < − f(Φ(x))

‖DΦ(x)‖2
≤ ‖x− z‖2 +O(‖x− z‖22) . (12)

for any x ∈ Φ−1(Ω) and any z ∈ ∂Φ−1(Ω). This means that h ≡ −(f ◦ Φ)/‖DΦ‖2 is an approximate distance
estimator in the preimage Φ−1(Ω), as long as the second derivative of Φ is not too large! Therefore, we can do
standard ray marching with this distance estimator in Φ−1(Ω). The algorithm would look something like this:

1. Input: Position xi ∈ ∂Ω and direction ωi where light has entered the object Ω.

2. Transform xi and ωi into the preimage ∂Φ−1(Ω):

x′i ← Φ−1(xi)

ω′i ← (DΦ(xi))
−1ωi

(13)

3. Ray march using the distance estimator −(f ◦ Φ)/‖DΦ‖2 until we hit the boundary ∂Φ−1(Ω).

4. Transform the resulting intersection position and direction x′o and ω′o back to the space Ω:

xo ← Φ(x′o)

ωo ← (DΦ(x′o))ω
′
o

(14)
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5. Output: light leaves the object Ω at position xo in direction ωo.

Note that the computation of ‖DΦ(x)‖2 can be expensive as it may require doing power method or taking an SVD.
Instead, one could also use the Frobenius or the geometric average of L1 and L∞ operator norms,

‖DΦ‖2 ≤ ‖DΦ‖F ‖DΦ‖2 ≤
√
‖DΦ‖1‖DΦ‖∞ , (15)

both of which are significantly easier to compute. In my implementation, I use the Frobenius norm.
Note that if one has access to higher derivatives, for example, second order, then one can use a higher order

Taylor expansion, to construct an approximate distance estimator, e.x.

‖Φ(x)− Φ(z)‖2 ≤ ‖DΦ‖2‖x− z‖2 +
1

2
‖D2Φ‖2‖x− z‖22 +O(‖x− z‖32) (16)

This algorithm has a number of advantages and drawbacks. The first advantage is that it is relatively easy to
implement, assuming one has been given the forward and backward coordinate transformations Φ and Φ−1, the
Jacobians DΦ and DΦ−1 (note we only actually need one, since they are inverses of each other), and the signed
distance estimator f . The algorithm is also relatively efficient. However, it can only handle metamaterials which
derive their underlying metric from a coordinate transformation. This is, of course, only a small subset of possible
metamaterials – an important subset – but nonetheless small. Therefore, I also propose the numerical integration of
geodesics algorithm below.

Numerical Integration of Geodesics
The alternative method I propose, is to actually solve the geodesic equation (4) outright and compute the path xµ(s)
the light takes through the material Ω directly. Note that while the previous method works only when gµν comes
from a coordinate transformation Φ and when we have a computable distance estimator f for the boundary of Ω.
This method is much more general. We can rewrite the geodesic equations as a system of first-order ODEs,

d

ds

[
uµ

vν

]
=

[
vµ

−Γναβv
αvβ

]
(17)

where uµ(s) is the position of the geodesic at s, and vµ(s) is the velocity of the geodesic at s. Note that, when a
ray of light intersects the domain Ω, we have the initial conditions uµ(0) and vµ(0) are these are just the position of
intersection and ray direction respectively. Therefore, one can numerically integrate the above ODE forward in time
until uµ(s) hits the boundary ∂Ω. I propose using a Runge-Kutta scheme (perhaps RK4). The full algorithm will
look like this,

1. Input: Position xi ∈ ∂Ω and direction ωi where light has entered the object Ω.

2. Write the system (17) as
d~y

ds
= f(~y) , (18)

where ~y is the combined position and velocity of the light ray. Using the initial values xi and ωi, integrate the
system while checking for intersection with ∂Ω at every time step. When we finally intersect ∂Ω, let xo and ωo
be the position and velocity values of ~y.

3. Output: light leaves the object Ω at position xo in direction ωo.

Analogues for Snell’s Law and the Law of Reflection
If light crosses a discontinuity in the metric gµν , then it logically bends in some fashion, as is the case when light
enters a material with different index of refraction. I was unable to find an expression for the manner in which light
bends for metamaterials when it crosses a discontinuity in gµν . So, I derived myself how to calculate refraction and
reflection angles using the Principle of Least Action.

Suppose light is passing from a material with metric g(i) to a material with metric g(o). By looking at an
infinitesimally small region around the point y(α, β) where the light penetrates the boundary, we may assume that
g(i) and g(o) are constant on either sides of the boundary. Moreover, since g(i) and g(o) are constant, light travels
in a straight line, bending only at the boundary. Again, since we are considering the problem infinitesimally, we
may assume that the point the light intersects the boundary is given by y(α, β) = αu + βv, where u and v are two
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arbitrary vectors spanning the tangent space (i.e. tangent and binormal vectors), for some α and β. If the light
travels from xi on one side of the boundary to xo on the other, then the light path should extremize the Lagrangian

L[γ] = ‖y(α, β)− xi‖g(i) + ‖y(α, β)− xo‖g(o) . (19)

Taking derivatives in u and v,

∂L
∂α

=
〈u, y(α, β)− xi〉g(i)
‖y(α, β)− xi‖g(i)

+
〈u, y(α, β)− xo〉g(i)
‖y(α, β)− xo‖g(o)

=
〈u, ωi〉g(i)
‖ωi‖g(i)

−
〈u, ωo〉g(o)
‖ωo‖g(o)

= 0 ,

∂L
∂β

=
〈v, y(α, β)− xi〉g(i)
‖y(α, β)− xi‖g(i)

+
〈v, y(α, β)− xo〉g(i)
‖y(α, β)− xo‖g(o)

=
〈v, ωi〉g(i)
‖ωi‖g(i)

−
〈v, ωo〉g(o)
‖ωo‖g(o)

= 0 ,

(20)

where ωi and ωo are the ingoing and outgoing directions respectively. Therefore, given ωi, we should choose ωo to
satisfy

〈u, ωo〉g(o)
‖ωo‖g(o)

=
〈u, ωi〉g(i)
‖ωi‖g(i)

,

〈v, ωo〉g(o)
‖ωo‖g(o)

=
〈v, ωi〉g(i)
‖ωi‖g(i)

.

(21)

Note that, in the case where g(i)µν = η2i δµν and g(o)µν = η2oδµν , the above equations reduce to

ηo cos θo = ηi cos θi , (22)

the familiar Snell’s Law. For the law of reflection, one repeats this procedure to obtain

〈u, ωo〉g
‖ωo‖g

= −〈u, ωi〉g
‖ωi‖g

,

〈v, ωo〉g
‖ωo‖g

= −〈v, ωi〉g
‖ωi‖g

.

(23)

However, given ωi and g(i) and g(o), it remains to actually solve for the refraction and reflection directions ωo.

Computing Refraction and Reflection Vectors
To propose a numerical solution to solving the system (21), we first rewrite it the above using linear algebra notation.
Let Go and Gi be the 3x3 matrix representations of the metrics go and gi. Note that Go and Gi are SPD since go
and gi are metrics. We also choose u and v to be in the direction of ωi.

Now, the system (21) can be written as

uTGoωo√
ωTo Goωo

=
uTGiωi√
ωTi Giωi

,

vTGoωo√
ωTo Goωo

=
vTGiωi√
ωTi Giωi

.

(24)

Since the quantities on the right hand sides are known, we simply replace them by scalars γ and δ,

uTGoωo√
ωTo Goωo

= γ ,

vTGoωo√
ωTo Goωo

= δ .

(25)

Now, we take the Cholesky factorization of Go = LTL. In comparison to the eigenvalue decomposition, this factor-
ization is significantly cheaper and easier to compute. Now, when we make the substitution, we see that

(Lu)T (Lωo)√
(Lωo)T (Lωo)

= γ ,

(Lv)T (Lωo)√
(Lωo)T (Lωo)

= δ .

(26)
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Normalizing the vectors Lu and Lv, rewriting the normalized quantities as ũ ≡ Lu/|Lu| and ṽ ≡ Lv/|Lv|, and
rewriting ω̃o ≡ Lωo gives

ũT ω̃o
|ω̃o|

= γ′ ,

ṽT ω̃o
|ω̃o|

= δ′ .

(27)

We now transform all vectors by a rotation such that ũ is rotated into the unit z vector and ṽ is rotated into the
xz-plane. We call this orthogonal transformation Q. Then the above equations become

cos θ = γ′

cosψωv = δ′
(28)

Where θ is the inclination of transformed vector Qω̃o in spherical coordinates. And ψωv is the angle Qω̃o makes with
Qṽ. Furthermore, we can compute

cosψuv = ũT ṽ (29)

Then, the spherical law of cosines tells us that azimuth ϕ of Qω̃o is given by

cosϕ =
cosψωv − cos θ cosψuv

sin θ sinψuv
=

δ′ − γ′ũT ṽ√
1− γ′2

√
1− (ũT ṽ)2

(30)

Afterwards, there are two possibilities for the vector QLωo,

QLωo = (sin θ cosϕ,± sin θ sinϕ, cos θ) (31)

Afterwards, we can recover the two possibilities for ωo by applying Q−1 and then L−1. We then take the vector
which has positive dot product with the outgoing normal vector. It is possible that neither of the vectors has positive
dot product, in which case, there is total internal reflection. One notes the same process can be used for computing
reflection vectors in (23).

Example 1: Radial Transformations and An Imperfect Cloaking Device
To implement an example, we consider a simple class of metamaterial which transforms the radial distance of points
from the origin. That is, we consider transformations of the form

Φ(x) = α(x)x . (32)

That is the position x = (x1, x2, x3) is scaled by a factor α which depends on position. Note that Φ−1 also has the
form of the above transformation. The Jacobian of this transformation is given by

DΦ(x) = x⊗∇α(x) + α(x)I , (33)

where ⊗ denotes the outer product, and I is the 3x3 identity. Alternatively, these transformations can be written as
sending r 7→ r′ where r = |x| and α(x) = r′/r. Transformations with gaps in the coverage of r′ mask regions of the
image of Φ, thereby making them invisible. An example such transformation can be seen in figure (2).
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Figure 5: An example radial transformation with R1 = 0.5 and R2 = 1. This transformation generates a cavity of
radius R1 which light cannot enter. The kink at R2 means that the resulting transformation does not generate a
perfect invisibility device. One could generate a perfect invisibility device by enforcing that r(0) = R1, r(R2) = R2

and r′(R2) = 1.

We use this linear transformation instead of a transformation which does not have a kink at R2 because this
transformation is easier to implement and will produce an actual visual effect. Here α(x) and α−1(x) are given by

α(x) =
R1

|x|
+
R2 −R1

R2
,

α−1(x) = − R1R2

(R2 −R1)|x|
+

1

R2 −R1
,

(34)

with corresponding gradients:

∇α(x) = −R1x

|x|3
,

∇α−1(x) =
R1R2x

(R2 −R1)|x|3
,

(35)

The availability of all Φ,Φ−1, DΦ, DΦ−1 means that the coordinate transformed distance estimator algorithm is
relatively straightforward to implement. To generate images, we use a simple signed distance estimator for a spherical
shell with inner radius R1 and outer radius R2,

f(x) = max(|x| −R2, R1 − |x|) . (36)

The image generated by this technique can be seen in figure (7), with an image of the scene without the imperfect
cloaking device seen in figure (6).

Example 2: Negative and Anisotropic Refraction
Another interesting feature of metamaterials is that they can generate negative refraction, and also refraction which
is anisotropic. For this example, I use the transformation given by

Φ−1(x, y, z) =

 0.75 0 0.1
0.1 0.85 0
0.7 −0.1 0.85

 x
y
z

 . (37)

The result of using this transformation can be seen in figure (8). Note that near the edges of the sphere, we can
see total external reflection. This effect happens when the algorithm for computing refraction cannot find a suitable
vector in the direction of the inward normal vector.
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Figure 6: An example of our base scene with no imperfect cloaking device. The white sphere in front of the green
Killeroo is obscured by an imperfect cloaking device in figure (7). Scene was rendered with direct integration.

Figure 7: A copy of the above scene seen in figure (6), but with an imperfect cloaking device placed around the white
sphere. Note that the cloaking device is perceptible because of the kink in the radial transformation from figure (5).
However, the white sphere is not visible. Note that because the scene was rendered with only direct integration, the
shadow of the white sphere is visible in the cloaking device. This is technically not correct, but it is a result of the
integration method used and not the metamaterial algorithm.
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Figure 8: Negative anisotropic refraction generated by the transformation in equation (37). Note that near the edges
of the sphere there is total external reflection.
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