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1 Extended Depth of Field Microscopy

In recent years live cell fluorescence microscopy has become increasingly important
in biological and medical studies. This is largely due to new genetic engineering
techniques which allow cell features to grow their own fluorescent markers. A pop-
ular example is green fluorescent protein. This avoids the need to stain, and thereby
kill, a cell specimen before taking fluorescence images, and thus provides a major
new method for observing live cell dynamics.

With this new opportunity come new challenges. Because in earlier days the
process of staining killed the cells, microscopists could do little additional harm by
squashing the preparation to make it flat, thereby making it easier to image with a
high resolution, shallow depth of field lens. In modern live cell fluorescence imag-
ing, the specimen may be quite thick (in optical terms). Yet a single 2D image per
time–step may still be sufficient for many studies, as long as there is a large depth
of field as well as high resolution.

Light is a scarce resource for live cell fluorescence microscopy. To image rapidly
changing specimens the microscopist needs to capture images quickly. One of the
chief constraints on imaging speed is the light intensity. Increasing the illumination
will result in faster acquisition, but can affect specimen behaviour through heating,
or reduce fluorescent intensity through photobleaching.

Another major constraint is the depth of field. Working at high resolution gives a
very thin plane of focus, leading to the need to constantly “hunt” with the focus knob
while viewing thick specimens with rapidly moving or changing features. When
recording data, such situations require the time-consuming capture of multiple focal
planes, thus making it nearly impossible to perform many live cell studies.

Ideally we would like to achieve the following goals:

• use all available light to acquire images quickly,
• achieve maximum lateral resolution,
• and yet have a large depth of field.

However, such goals are contradictory in a normal microscope.
For a high aperture aplanatic lens, the depth of field is [18]
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Figure1. Depth of field (solid line), lateral resolution (dashed line) and peak intensity at
focus (dotted line – arbitrary units) for an oil immersion (noil = 1.518) aplanatic microscope
objective with a typical range of NA and λ0 = 0.53 µm is the vacuum wavelength

where ∆z is defined as the distance along the optical axis for which the intensity is
more than half the maximum. Here the focal region wavelength is λ and the aperture
half–angle is α. A high aperture value for the lateral resolution can be approximated
from the full–width at half–maximum (FWHM) of the unpolarised intensity point
spread function (PSF) [17]. We can use the same PSF to find the peak intensity at
focus, as a rough indication of the high aperture light collection efficiency,
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These relationships are plotted in Fig. 1 for a range of numerical apertures (NA),

NA = n1 sinα (3)

where n1 is the refractive index of the immersion medium. Clearly maximising the
depth of field conflicts with the goals of high resolution and light efficiency.

1.1 Methods For Extending the Depth of Field

A number of methods have been proposed to work around these limitations and
produce an extended depth of field (EDF) microscope.

Before the advent of charge–coupled device (CCD) cameras, Häusler [8] pro-
posed a two step method to extend the depth of focus for incoherent microscopy.
First, an axially integrated photographic image is acquired by leaving the camera
shutter open while the focus is smoothly changed. The second step is to deconvolve
the image with the integration system transfer function. Häusler showed that as long
as the focus change is more than twice the thickness of the object, the transfer func-
tion does not change for parts of the object at different depths — effectively the
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transfer function is invariant with defocus. The transfer function also has no zeros,
providing for easy single–step deconvolution.

This method could be performed easily with a modern microscope, as demon-
strated recently by Juškaitis et al [11]. However, the need to smoothly vary the focus
is a time–consuming task requiring some sort of optical displacement within the mi-
croscope. This is in conflict with our goal of rapid image acquisition.

A similar approach is to simply image each plane of the specimen, stepping
through focus, then construct an EDF image by taking the axial average of the 3D
image stack, or some other more sophisticated operation which selects the best fo-
cused pixel for each transverse specimen point. This has been described in applica-
tion to confocal microscopy [21], where the optical sectioning makes the EDF post–
processing straightforward. Widefield deconvolution images could also be used. In
both cases the focal scanning and multiple plane image capture are major limitations
on overall acquisition speed.

Potuluri et al [16] have demonstrated the use of rotational shear interferometry
with a conventional widefield transmission microscope. This technique, using inco-
herent light, adds significant complexity, and sacrifices some signal–to–noise ratio
(SNR). However the authors claim an effectively infinite depth of field. The main
practical limit on the depth of field is the change in magnification with depth (per-
spective projection) and the rapid drop in image contrast away from the imaging
lens focal plane.

Another approach is to use a pupil mask to increase the depth of field, combined
with digital image restoration. This creates a digital–optical microscope system. De-
signing with such a combination in mind allows additional capabilities not possible
with a purely optical system. We can think of the pupil as encoding the optical wave-
front, so that digital restoration can decode a final image, which gives us the term
wavefront coding.

In general a pupil mask will be some complex function of amplitude and phase.
The function might be smoothly varying, and therefore usable over a range of wave-
lengths. Or it might be discontinuous in step sizes that depend on the wavelength,
such as a binary phase mask.

Many articles have explored the use of amplitude pupil masks [14,15,25], in-
cluding for high aperture systems [4]. These can be effective at increasing the depth
of field, but they do tend to reduce dramatically the light throughput of the pupil.
This poses a major problem for low light fluorescence microscopy.

Wilson et al [26] have designed a system which combines an annulus with a
binary phase mask. The phase mask places most of the input beam power into the
transmitting part of the annular pupil, which gives a large boost in light throughput
compared to using the annulus alone. This combination gives a ten times increase in
depth of field. The EDF image is laterally scanned in x and y, and then deconvolution
is applied as a post–processing step.

Binary phase masks are popular in lithography where the wavelength can be
fixed. However, in widefield microscopy any optical component that depends on
a certain wavelength imposes serious restrictions. In epi-fluorescence, the incident
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and excited light both pass through the same lens. Since the incident and excited
light are at different wavelengths, any wavelength dependent pupil masks would
need to be imaged onto the lens pupil from beyond the beam splitter that separates
the incoming and outgoing light paths. This adds significant complexity to the opti-
cal design of a widefield microscope.

The system proposed by Wilson et al [26] is designed for two-photon confocal
microscopy. Optical complexity, monochromatic light, and scanning are issues that
confocal microscopy needs to deal with anyway, so this method of PSF engineering
adds relatively little overhead.

Wavefront coding is an incoherent imaging technique that relies on the use of a
smoothly varying phase–only pupil mask, along with digital processing. Two spe-
cific functions that have been successful are the cubic [3,6] and logarithmic [5]
phase masks, where the phase is a cubic or logarithmic function of distance from
the centre of the pupil, in either radial or rectangular co-ordinates. The logarithmic
design is investigated in detail in Chap. ??.

The cubic phase mask (CPM) was part of the first generation wavefront coding
systems, designed for general EDF imaging. The CPM has since been investigated
for use in standard (low aperture) microscopy [24]. The mask can give a ten times
increase in the depth of field without loss of transverse resolution.

Converting a standard widefield microscope to a wavefront coding system is
straightforward. The phase mask is simply placed in the back pupil of the micro-
scope objective. The digital restoration is a simple single-step deconvolution, which
can operate at video rates. Once a phase mask is chosen to match a lens and appli-
cation, an appropriate digital inverse filter can be designed by measuring the PSF.
The resulting optical–digital system is specimen independent.

The main trade off is a lowering of the SNR as compared with normal widefield
imaging. The CPM also introduces an imaging artefact where specimen features
away from best focus are slightly laterally shifted in the image. This is in addition
to a perspective projection due to the imaging geometry, since an EDF image is
obtained from a lens at a single position on the optical axis. Finally, as the CPM is a
rectangular design, it strongly emphasises spatial frequencies that are aligned with
the CCD pixel axes.

High aperture imaging does produce the best lateral resolution, but it also re-
quires more complex theory to model accurately. Yet nearly all of the investigations
of EDF techniques reviewed above are low aperture. In this chapter we choose a
particular EDF method, wavefront coding with a cubic phase plate, and investigate
its experimental and theoretical performance for high aperture microscopy.

2 High Aperture Fluorescence Microscopy Imaging

A wavefront coding microscope is a relatively simple modification of a modern
microscope. A system overview is shown in Fig. 2.

The key optical element in a wavefront coding system is the waveplate. This is a
transparent molded plastic disc with a precise aspheric height variation. Placing the



High Aperture Wavefront Coding Fluorescence Microscopy 5

Object

Objective Lens

Phase Plate

Signal
Processed
Final Image
(deblurred)

CCD
Intermediate

Image (blurred)

CCD Camera

Phase Plate

Figure2. An overview of a wavefront coding microscope system. The image-forming light
from the object passes through the objective lens and phase plate and produces an intermedi-
ate encoded image on the CCD camera. This blurred image is then digitally filtered (decoded)
to produce the extended depth of field result. Examples at right show the fluorescing cell im-
age of Fig. 7(c) at each stage of the two–step process. At lower left an arrow shows where the
phase plate is inserted into the microscope

waveplate in the back focal plane of a lens introduces a phase aberration designed
to create invariance in the optical system against some chosen imaging parameter.
A cubic phase function on the waveplate is useful for microscopy, as it makes the
low aperture optical transfer function (OTF) insensitive to defocus.

While the optical image produced is quite blurry, it is uniformly blurred over a
large range along the optical axis through the specimen (Fig. 3). From this blurred
intermediate image, we can digitally reconstruct a sharp EDF image, using a mea-
sured PSF of the system and a single step deconvolution. The waveplate and digital
filter are chosen to match a particular objective lens and imaging mode, with the
digital filter further calibrated by the measured PSF. Once these steps are carried
out, wavefront coding works well for any typical specimen.

The EDF behaviour relies on modifying the light collection optics only, which
is why it can be used in other imaging systems such as photographic cameras, with-
out needing precise control over the illumination light. In epi-fluorescence both the
illumination light and the fluorescent light pass through the waveplate. The CPM
provides a beneficial effect on the illumination side, by spreading out the axial range
of stimulation in the specimen, which will improve the SNR for planes away from
best focus.

2.1 Experimental Method

The experimental setup followed the system outline shown in Fig. 2. We used a Zeiss
Axioplan microscope with a Plan Neofluar 40x 1.3 NA oil immersion objective. The
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Figure3. How points are imaged in standard versus wavefront coding systems: (a) Conven-
tional (small depth of field) system with two axially–separated objects to the left of a lens.
Because each object obtains best focus at a different image plane, the arrow object points
decrease in diameter toward their plane of best focus (far right), while the object points of
the diamond are increasingly blurred. (b) Inserting a CPM phase plate causes points from
both objects to be equivalently blurred over the same range of image planes. Signal process-
ing can be applied to any one of these images to remove the constant blur and produce a
sharply–focused EDF image

wavefront coding plate was a rectangular cubic phase function design (CPM 127-
R60 Phase Mask from CDM Optics, Boulder, CO, USA) with a peak to valley phase
change of 56.6 waves at 546 nm across a 13 mm diameter optical surface. This plate
was placed in a custom mount and inserted into the differential interference contrast
slider slot immediately above the objective, and aligned so that it was centred with
the optical axis, covering the back pupil.

A custom square aperture mask was inserted into an auxiliary slot 22 mm above
the lens, with the square mask cut to fit inside the 10 mm circular pupil of the
objective lens. This square mask is needed due to the rectangular nature of the CPM
function,

ϕ(m, n) = A(m3 + n3) , (4)

where m and n are the Cartesian co-ordinates across the pupil and A is the strength
of the phase mask (see Fig. 4). The square mask was rotated to match the mn axes of
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Figure4. Height variation across the cubic phase mask given in (4), for A = 1

the CPM. For comparison, standard widefield fluorescence imaging was performed
without the CPM or the square aperture mask in place.

Images were taken in epi-fluorescence mode with a mercury lamp (HBO 50 W)
and fluorescein isothiocyanate (FITC) fluorescence filters in place. Images were
recorded with a Photometrics cooled camera (CH250) with a Thomson TH 7895
CCD at 12 bit precision. To ensure we were sampling at the maximum resolution
of the 1.3 NA lens, a 2.5x eyepiece was inserted just before the camera inside a
custom camera mount tube. This tube also allowed precise rotational alignment of
the camera, in order to match the CCD pixel array xy axes with the CPM mn axes.

With 100x total magnification and 19 µm square CCD pixels, this setup gave a
resolution of 0.19 µm per pixel. This is just below the theoretical maximum resolu-
tion of 0.22 µm for a 1.3 NA lens (see Fig. 1), for which critical sampling would be
0.11 µm per pixel, so the results are slightly under sampled.

The PSF was measured using a 1 µm diameter polystyrene bead stained with
FITC dye. The peak emission wavelength for FITC is 530 nm. Two dimensional PSF
images were taken over a focal range of 10 µm in 1 µm steps. This PSF measurement
was used to design an inverse filter to restore the EDF image. The OTF was obtained
from the Fourier transform of the 2D PSF.

Each wavefront coding intermediate image was a single exposure on the CCD
camera. A least squares filter was incorporated into the inverse filter to suppress
noise beyond the spatial frequency cutoff of the optical system. A final wavefront
coding image was obtained by applying the inverse filter to a single intermediate
image.
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Figure5. Experimental PSFs and OTFs for the widefield and wavefront coding systems as
measured using a 1 µm fluorescent bead and a NA = 1.3 oil objective.For each type of micro-
scope, a PSF from the plane of best focus is followed by one with 4 µm defocus. The upper
images (a-d) show the intensity of a central region of the PSF whilst the lower graph (e) gives
the magnitude of the OTF for a line m = 0 through the OTF for each case: (a) widefield
zd = 0 µm (solid line), (b) widefield defocused zd = 4 µm (dashed line), (c) CPM zd = 0 µm
(dotted line), (d) CPM defocused zd = 4 µm (dash–dotted line). The spatial frequency n has
been been normalised so that n = 1 lies at the CCD camera spatial frequency cutoff. The
PSFs have area 13 µm × 13 µm

2.2 PSF and OTF Results

The measured PSFs and derived OTFs for the focused and 4 µm defocused cases are
shown in Fig. 5, comparing standard widefield microscopy with wavefront coding
using a CPM.

The widefield PSF shows dramatic change with defocus as expected for a high
aperture image of a 1 µm bead. But the wavefront coding PSF shows very little
change after being defocused by the same amount.



High Aperture Wavefront Coding Fluorescence Microscopy 9

(a)

-1.0 -0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

m

n

(a)

-1.0 -0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

m

n

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

(b)

-1.0 -0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

m

n

(b)

-1.0 -0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

m

n

-3

-2

-1

0

1

2

3

Figure6. The measured CPM in–focus 2D OTF: (a) is the magnitude of the OTF in log10

scale, and (b) is the wrapped OTF phase in radians. The spatial frequencies m and n have
been been normalised so that |m|, |n| = 1 lies at the CCD camera spatial frequency cutoff

The OTF measurements emphasise this focus independence for the wavefront
coding system. While the in–focus OTF for the widefield system has the best overall
response, the OTF quickly drops after defocusing. The widefield defocused OTF
also has many nulls before the spatial frequency cutoff, indicated in these results
by a downward spike. These nulls make it impossible in widefield to use the most
straightforward method of deconvolution – division of the image by the system OTF
in Fourier space. Time consuming iterative solutions must be used instead.

The wavefront coding system OTF shows a reduced SNR compared with the
in–focus widefield OTF. Yet the same SNR is maintained through a wide change in
focus, indicating a depth of field at least 8 times higher than the widefield system.
The CPM frequency response extends to 80% of the spatial frequency cutoff of
the widefield case before descending into the noise floor. This indicates that the
wavefront coding system has maintained much of the transverse resolution expected
from the high aperture lens used. Because there are no nulls in the CPM OTF at
spatial frequencies below the SNR imposed cutoff, deconvolution can be performed
using a single–pass inverse filter based on the reciprocal of the system OTF.

A limiting factor on the SNR, and therefore the wavefront coding system reso-
lution, is the CCD camera dynamic range of 12 bits, giving a noise floor of at least
2.4 × 10−4. From Fig. 5(e) the effective noise floor seems to be a bit higher at 10−3.
This has a greater impact on the off–axis spatial frequencies, where a higher SNR is
required to maintain high spatial frequency response, an effect which is clearly seen
in the measured 2D OTF in Fig. 6.

2.3 Biological Imaging Results

In order to experimentally test high resolution biological imaging using the CPM
wavefront coding system in epi-fluorescence, we imaged an anti-tubulin / FITC–
labeled HeLa cell. For comparison, we also imaged the same mitotic nucleus in
both a standard widefield fluorescence microscope and a confocal laser scanning
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Figure7. Comparison images of an antitubulin / FITC–labeled HeLa cell nucleus obtained
using three kinds of microscope. (a-b) Conventional widefield fluorescence images of the
same mitotic nucleus acquired at two different focal planes, 6 µm apart in depth. Misfocus
blurring is prevalent, with only one of the two centrioles in focus in each image. (c) A CPM
wavefront coding image of this nucleus greatly increases focal depth so that now both cen-
trioles in the mitotic spindle are sharply focused. (d) An equivalent confocal fluorescence
EDF image obtained by averaging 24 separate planes of focus, spaced 0.5 µm apart. The
resolutions of the wavefront coding and confocal images are comparable but the confocal
image took over 20 times longer to produce. Note that wavefront coding gives a perspective
projection and confocal gives an isometric projection, which chiefly accounts for their slight
difference in appearance.Objective NA=1.3 oil, scale bar: 6 µm

system (Fig. 7). The first widefield image, Fig. 7(a), shows a mitotic nucleus with
one centriole in sharp focus, while a second centriole higher in the specimen is
blurred. This feature became sharp when the focus was altered by 6 µm, as shown
in Fig. 7(b). The wavefront coding system image in Fig. 7(c) shows a much greater
depth of field, with both centrioles in focus in the same image. We observed a depth
of field increase of at least 6 times compared with the widefield system, giving a
6 µm depth of field for the wavefront coding system for the NA = 1.3 oil objective.

For further comparison, we imaged the same specimen using a confocal mi-
croscope. A simulated EDF image is shown in Fig. 7(d), obtained by averaging 24
planes of focus. This gives an image of similar quality to the wavefront coding im-
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age. However, the confocal system took over 20 times longer to acquire the data for
this image, due to the need to scan the image point in all three dimensions. There is
also a change in projection geometry between the two systems. The confocal EDF
image has orthogonal projection, whereas the wavefront coding EDF image has per-
spective projection.

3 Wavefront Coding Theory

In this section we will investigate theoretical models for wavefront coding mi-
croscopy. We present a summary of the development of the cubic phase function
and the paraxial theory initially used to model it. We then analyse the system using
vectorial high aperture theory, as is normally required for accuracy with a 1.3 NA
lens.

High aperture vectorial models of the PSF for a fluorescence microscope are
well developed [9,23]. The Fourier space equivalent, the OTF, also has a long history
[7,13,20]. However, the CPM defined in (4) is an unusual microscope element:

1. Microscope optics usually have radial symmetry around the optical axis, which
the CPM does not.

2. The CPM gives a very large phase aberration of up to 60 waves, whilst most
aberration models are oriented towards phase strengths on the order of a wave
at most.

3. In addition, the CPM spreads the light over a very long focal range, whilst most
PSF calculations can assume the energy drops off very rapidly away from focus.

These peculiarities have meant we needed to take particular care with numerical
computation in order to ensure accuracy, and in the case of the OTF modeling the
radial asymmetry has motivated a reformulation of previous symmetric OTF theory.

3.1 Derivation of the Cubic Phase Function

There are various methods that may be used to derive a pupil phase function which
has the desired characteristics for EDF imaging. The general form of a phase func-
tion in Cartesian co-ordinates is

T (m, n) = exp[ikϕ(m, n)] , (5)

where m, n are the lateral pupil co-ordinates and k = 2π/λ is the wave-number. The
cubic phase function was found by Dowski and Cathey [6] using paraxial optics
theory by assuming the desired phase function is a simple 1D function of the form

ϕ(m) = Amγ, γ , {0, 1}, A , 0 . (6)

By searching for the values of A and γ which give an OTF which does not change
through focus, they found, using the stationary phase approximation and the ambi-
guity function, that the best solution was for A � 20/k and γ = 3. Multiplying out
to 2D, this gives the cubic phase function in (4).
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3.2 Paraxial Model

Using the Fraunhofer approximation, as suitable for low NA, we can write down
a 1D pupil transmission function encompassing the effects of cubic phase (4) and
defocus,

T (m) = exp[ikϕ(m)] exp(im2ψ) , (7)

where ψ is a defocus parameter. We then find the 1D PSF is

E(x) =
∫ 1

−1
T (m) exp(ixm)dm , (8)

where x is the lateral co-ordinate in the PSF . The 1D OTF is

C(m) =
∫ 1

−1
T (m′ + m/2)T∗(m′ − m/2)dm′ . (9)

The 2D PSF is simply E(x)E(y).
Naturally this 1D CPM gives behaviour in which, in low aperture systems at

least, the lateral x and y imaging axes are independent of each other. This gives
significant speed boosts in digital post–processing. Another important property of
the CPM is that the OTF does not reach zero below the spatial frequency cutoff
which means that deconvolution can be carried out in a single step. The lengthy
iterative processing of widefield deconvolution is largely due to the many zeros in
the conventional defocused OTF. Another important feature of Fraunhofer optics is
that PSF changes with defocus are limited to scaling changes. Structural changes in
the PSF pattern are not possible.

This paraxial model for the cubic phase mask has been thoroughly verified ex-
perimentally for low NA systems [3,24].

3.3 High Aperture PSF Model

We now explore the theoretical behaviour for a high NA cubic phase system. Nor-
mally we need high aperture theory for accurate modeling of lenses with NA > 0.5.
However large aberrations like our cubic phase mask can sometimes overwhelm
the high NA aspects of focusing. By comparing the paraxial and high NA model
results we can determine the accuracy of the paraxial approximation for particular
wavefront coding systems.

The theory of Richards and Wolf [17] describes how to determine the electric
field near to the focus of a lens which is illuminated by a plane polarised quasi-
monochromatic light wave. Their analysis assumes very large values of the Fresnel
number, equivalent to the Debye approximation. We can then write the equation
for the vectorial amplitude PSF E(x) of a high NA lens illuminated with a plane
polarised wave as the Fourier transform of the complex vectorial pupil function
Q(m) [13],

E(x) = − ik
2π

∫ ∫ ∫

Q(m) exp(ikm · x)dm . (10)
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m=(m,n,s)

x=(x,y,z)


Figure8. Diagram of the light focusing geometry used in calculating the high NA PSF, in-
dicating the focal region co-ordinate x and the pupil co-ordinate m, the latter of which may
also be thought of as a unit vector aligned with a ray from the pupil to the focal point O

Here m = (m, n, s) is the Cartesian pupil co-ordinate, and x = (x, y, z) is the
focal region co-ordinate. The z axis is aligned with the optical axis, and s is the cor-
responding pupil co-ordinate, as shown in Fig. 8. The vectorial pupil function Q(m)
describes the effect of a lens on the polarisation of the incident field, the complex
value of any amplitude or phase filters across the aperture, and any additional aber-
ration in the lens focusing behaviour from that which produces a perfect spherical
wavefront converging on the focal point.

From the Helmholtz equation for a homogeneous medium, assuming constant
refractive index in the focal region, we know that the pupil function is only non-
zero on the surface of a sphere with radius k,

Q(m) = P(m)δ(|m| − k2) . (11)

Because the pupil function only exists on the surface of a sphere, we can slice it
along the s = 0 plane into a pair of functions

Q(m) = Q(m)
k
s
δ(s −

√
k2 − l2) + Q(m)

k
s
δ(s +

√
k2 − l2) , (12)

representing forward and backward propagation [1,22]. Here we have introduced a
radial co-ordinate l =

√
m2 + n2. Now we take the axial projection P+(m, n) of the

forward propagating component of the pupil function,

P+(m, n) =
∫ ∞

0
Q(m)

k
s
δ(s −

√
k2 − l2)ds (13)

= Q(m, n, s+)
1
s+

, (14)

where we have normalised the radius to k = 1 and indicated the constraint on s to
the surface of the sphere with

s+ =
√

1 − l2 . (15)
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For incident light which is plane-polarised along the x axis, we can derive a
vectorial strength function a(m, n), from the strength factors used in the vectorial
point spread function integrals [12,17,22]

a(m, n) =





















(m2s+ + n2)/l2

−mn(1 − s+)/l2

−m





















(16)

where we have converted from the spherical polar representation in Richards and
Wolf to Cartesian co-ordinates.

We can now model polarisation, apodisation and aperture filtering as amplitude
and phase functions over the projected pupil,

P+(m, n) =
1
s+

a(m, n)S (m, n)T (m, n) (17)

representing forward propagation only (α ≤ π/2), where S (m, n) is the apodisation
function, and T (m, n) is any complex transmission filter applied across the aperture
of the lens. T can also be used to model aberrations.

Microscope objectives are usually designed to obey the sine condition, giving
aplanatic imaging [10], for which we write the apodisation as

S (m, n) =
√

s+ . (18)

By applying low angle and scalar approximations, we can derive from (17) a parax-
ial pupil function,

P+(m, n) � T (m, n) . (19)

Returning to the PSF, we have

E(x) = − ik
2π

∫ ∫

Σ

P+(m, n) exp(ikm+ · x)dmdn , (20)

integrated over the projected pupil area Σ. The geometry is shown in Fig. 8. We use
m+ = (m, n, s+) to indicate that m is constrained to the pupil sphere surface.

For a clear circular pupil of aperture half–angle α, the integration area Σcirc is
defined by

0 ≤ l ≤ sinα , (21)

while for a square pupil which fits inside that circle, the limits on Σsq are

|m| ≤ sinα/
√

2
|n| ≤ sinα/

√
2
. (22)

The transmission function T is unity for a standard widefield system with no
aberrations, while for a cubic phase system (4) and (5) give

Tc(m, n) = exp[ikA(m3 + n3)] . (23)
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3.4 High Aperture OTF Model

A high aperture analysis of the OTF is important, because the OTF has proven to be
more useful than the PSF for design and analysis of low aperture wavefront coding
systems. For full investigation of the spatial frequency response of a high aperture
microscope, we would normally look to the 3D OTF [7,13,19,20]. We have recently
published a method for calculating the 3D OTF suitable for arbitrary pupil filters
[1] which can be applied directly to find the OTF for a cubic phase plate. But since
an EDF system involves recording a single image at one focal depth, a frequency
analysis of the 2D PSF at that focal plane is more appropriate. This can be performed
efficiently using a high NA vectorial adaptation of 2D Fourier optics [22].

This adaptation relies on the Fourier projection–slice theorem [2], which states
that a slice through real space is equivalent to a projection in Fourier space:

f (x, y, 0)⇐⇒
∫

F(m, n, s)ds (24)

where F(m, n, s) is the Fourier transform of f (x, y, z). We have already obtained
the projected pupil function P+(m, n) in (17). Taking the 2D Fourier transform and
applying (24) gives the PSF in the focal plane

E(x, y, 0)⇐⇒ P+(m, n) . (25)

Since fluorescence microscopy is incoherent, we then take the intensity and 2D
Fourier transform once more to obtain the OTF of that slice of the PSF

C(m, n)⇐⇒ |E(x, y, 0)|2 . (26)

We can implement this approach using 2D fast Fourier transforms to quickly calcu-
late the high aperture vectorial OTF for the focal plane.

3.5 Defocused OTF and PSF

To investigate the EDF performance, we need to calculate the defocused OTF. De-
focus is an axial shift zd of the point source being imaged relative to the focal point.
By the Fourier shift theorem, a translation zd of the PSF is equivalent to a linear
phase shift in the 3D pupil function,

E(x, y, 0 + zd)⇐⇒ exp(ikszd)Q(m, n, s) . (27)

Applying the projection-slice theorem as before gives a modified version of (25)

E(x, y, zd)⇐⇒
∫

exp(ikszd)Q(m, n, s)ds . (28)

allowing us to isolate a pupil transmission function that corresponds to a given de-
focus zd,

Td(m, n, zd) = exp(iks+zd) , (29)
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Table1. Optical parameters used for PSF and OTF simulations

Optical parameter Simulation value
Wavelength 530 nm
Numerical aperture NA = 1.3 oil
Oil refractive index n1 = 1.518
Aperture half angle α = π/3
Pupil shape Square
Pupil width 7.1 mm
Cubic phase strength 25.8 waves peak to valley

which we incorporate into the projected pupil function P+(m, n) from (17), giving

P+(m, n, zd) =
1
s+

a(m, n)S (m, n)Td(m, n, zd)Tc(m, n) . (30)

If we assume a low aperture pupil, we can approximate (15) to second order, giving
the well known paraxial aberration function for defocus

Td(m, n, zd) � exp

(

−ikzd
l2

2

)

. (31)

Finally, using F to denote a Fourier transform, we write down the full algorithm for
calculating the OTF of a transverse slice through the PSF:

C(m, n, zd) = F −1
{

|F [P+(m, n, zd)]|2
}

. (32)

It is convenient to calculate the defocused PSF using the first step of the same ap-
proach:

E(x, y, zd) = F [P+(m, n, zd)] . (33)

3.6 Simulation Results

We have applied this theoretical model to simulate the wavefront coding experi-
ments described earlier, using the parameters given in Table 1. The theoretical as-
sumption that the incident light is plane polarised corresponds to the placement of
an analyser in the microscope beam path. This polarisation explains some xy asym-
metry in the simulation results.

Due to the large phase variation across the pupil, together with the large defocus
distances under investigation, a large number of samples of the cubic phase function
were required to ensure accuracy and prevent aliasing. We created a 2D array with
10242 samples of the pupil function P+ from (30) using (22) for the aperture cutoff.
We then padded this array out to 40962 to allow for sufficient sampling of the result-
ing PSF, before employing the algorithms in (33) and (32) to calculate the PSF and
OTF respectively. Using fast Fourier transforms, each execution of (32) took about
8 minutes on a Linux Athlon 1.4 GHz computer with 1 GB of RAM.



High Aperture Wavefront Coding Fluorescence Microscopy 17

10-4

10-3

10-2

10-1

100

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

|C
|

l

vectorial
paraxial

(a)

10-4

10-3

10-2

10-1

100

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

|C
|

l

vectorial
paraxial

(b)

Figure9. A comparison of widefield (no CPM) OTFs using our vectorial (solid line) and
paraxial (dashed line) simulations: (a) in–focus at zd = 0 µm and (b) defocused to zd = 4 µm.
For a diagonal line through the OTF along m = n, we have plotted the value of the 2D
projected OTF for each case. While the structure of the in–focus OTF curves is similar for the
two models, the relative difference between them increases with spatial frequency, reaching
over 130% at the cutoff. Once defocus is applied, the two models predict markedly different
frequency response in both structure and amplitude

The wavefront coding inverse filter for our experiments was derived from the
theoretical widefield (no CPM) OTF and the measured CPM OTF. The discrepancy
in the focal plane theoretical widefield OTF between the paraxial approximation
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x

y

Figure10. The simulated vectorial high aperture PSF for widefield and wavefront coding,
showing the effect of defocus: (a) widefield in–focus zd = 0 µm, (b) widefield defocused
zd = 4 µm, (c) CPM in–focus zd = 0 µm, (d) CPM defocused zd = 4 µm. This amount of
defocus introduces very little discernible difference between the CPM PSFs. Indeed paraxial
CPM simulations (not shown here) are also similar in structure. The PSFs shown have the
same area as Fig. 5 (13 µm×13 µm). The incident polarisation is in the x direction. The images
are normalised to the peak intensity of each case. Naturally the peak intensity decreases with
defocus, but much less rapidly in the CPM system
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Figure11. The simulated vectorial high aperture in–focus CPM OTF: (a) is the magnitude of
the OTF in log10 scale, and (b) is the wrapped phase in radians. While the frequency response
is much stronger along the m and n axes, the magnitude remains above 10−3 throughout the
spatial frequency cutoff. The phase of the OTF is very similar to the cubic phase in the pupil.
Compensating for the OTF phase is important in digital restoration. The zd = 4 µm defocused
OTF (not shown) has a similar appearance to this in–focus case. See Fig. 6 to compare with
the measured OTFs

and our vectorial high aperture calculation is shown in Fig. 9(a). We show a similar
comparison of the defocused widefield OTF in Fig. 9(b). We can see there is a major
difference in the predictions of the two models, especially at high frequencies. The
discrepancy between the models increases markedly with defocus. This implies that
the best deconvolution accuracy will be obtained by using the vectorial widefield
OTF when constructing the digital inverse filter for a high aperture system.

We now investigate the simulated behaviour of a CPM system according to our
vectorial theory. Figures 10 and 11 show the vectorial high aperture PSF and OTF
for the focal plane with a strong CPM. The defocused zd = 4 µm vectorial CPM
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Figure12. The magnitude of the wavefront coding OTF for the (a) vectorial and (b) paraxial
models, plotted along a diagonal line m = n through the OTF, with different values of defo-
cus: in–focus zd = 0 µm (solid line), defocused zd = 2 µm (dashed line), defocused zd = 4 µm
(dotted line). In common with the the widefield system, the models differ the most at high
spatial frequencies, up to 300% for the in–focus case. As defocus increases, the differences
become more extreme, with the vectorial simulation predicting a quicker reduction in effec-
tive cutoff

OTF (not shown) and the paraxial in–focus and defocused zd = 4 µm CPM PSFs and
OTFs (not shown) are all qualitatively similar to the vectorial CPM results shown in
Figs. 10 and 11.

However, if we perform a quantitative comparison we see that there are marked
differences. Figure 12 shows the relative strength of the CPM OTF for a diagonal
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cross section. The differences between the models are similar to the widefield OTF
in Fig. 9(a) for the in–focus case, with up to 100% difference at high spatial fre-
quencies. However, as the defocus increases, the structure of the vectorial CPM OTF
begins to diverge from the paraxial model, as well as the point where the strength
drops below 10−4. This is still a much lower discrepancy than the widefield model
for similar amounts of defocus, as is clear by comparison with Fig. 9.

These plots allow us to assess the SNR requirements for recording images with
maximum spatial frequency response. For both widefield and CPM systems, the
experimental dynamic range will place an upper limit on the spatial frequency re-
sponse. In widefield a 103 SNR of will capture nearly all spatial frequencies up to
the cutoff (see Fig. 9(a)), allowing for good contrast throughout. Further increases in
SNR will bring rapidly diminishing returns, only gradually increasing the maximum
spatial frequency response.

For CPM imaging the same 103 SNR will produce good contrast only for low
spatial frequencies, with the middle frequencies lying less than a factor of ten above
the noise floor, and the upper frequencies dipping below it. However, a SNR of 104

will allow a more reasonable contrast level across the entire OTF. For this reason,
a 16 bit camera, together with other noise control measures, is needed for a CPM
system to achieve the full resolution potential of high aperture lenses. This need for
high dynamic range creates a trade off for rapid imaging of living specimens – faster
exposure times will reduce the SNR and lower the resolution.

Arguably the most important OTF characteristic used in the EDF digital decon-
volution is the phase. As can be seen from Fig. 11 the CPM OTF phase oscillates
heavily due to the strong cubic phase. This corresponds to the numerous contrast
reversals in the PSF. The restoration filter is derived from the OTF, and therefore ac-
curate phase in the OTF is needed to ensure that any contrast reversals are correctly
restored.

A comparison of the amount of OTF phase difference between focal planes for
the vectorial and paraxial models is shown in Fig.13. We calculated this using the
unwrapped phase, obtained by taking samples of the OTF phase along a line m = n,
then applying a 1D phase unwrapping algorithm to those samples. After finding the
unwrapped phases for different focal planes, zd = 2 µm and zd = 4 µm, we then
subtracted them from the in focus case at zd = 0 µm.

Ideally the OTF phase difference between planes within the EDF range should
be very small. It is clear however that there are some notable changes with defocus.
Both paraxial and vectorial models show a linear phase ramp, with oscillations.

This linear phase ramp is predicted by the stationary phase approximation to the
1D CPM OTF, Eq. (A12) in Dowski and Cathey [6]. Since the Fourier transform
of a phase ramp is a lateral displacement, this gives a lateral motion of the PSF
for different focal planes. In practice this has the effect of giving a slightly warped
projection. A mismatch between the microscope OTF and the inverse filter of this
sort will simply result in a corresponding offset of image features from that focal
plane. Otherwise spatial frequencies should be recovered normally.
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Figure13. The relative OTF phase angle between focal planes, along a diagonal line m = n
through the CPM OTF, for (a) the vectorial model, and (b) the paraxial model. For both (a)
and (b) we show two cases, the unwrapped phase difference between the zd = 0 µm and
zd = 2 µm OTF (solid line) and the unwrapped phase difference between zd = 0 µm and
zd = 4 µm (dashed line). All cases show a linear phase ramp with an oscillation of up to
π/2. This phase ramp corresponds to a lateral shift of the PSF. The vectorial case shows an
additional curvature and larger overall phase differences of up to 4π radians (or 2 waves)
across the spectrum

The oscillations will have a small effect; they are rapid and not overly large in
amplitude: peaking at π/2 for both vectorial and paraxial models. This will effec-
tively introduce a source of noise between the object and the final recovered image.
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Whilst these oscillations are not predicted by the stationary phase approximation,
they are still evident for the paraxial model.

The most dramatic difference between the two models is in the curvature of
the vectorial case, which is particularly striking in the zd = 4 µm plane, and not
discernible at all in the paraxial case (Fig.13). This primary effect of this curvature
will be to introduce some additional blurring of specimen features in the zd = 4 µm
plane, which the inverse filter will not be able to correct. The total strength of this
curvature at zd = 4 µm is about 2π across the complete m = n line, or one wave,
which is a significant aberration.

3.7 Discussion

The CPM acts as a strong aberration which appears to dominate both the effects of
defocus and of vectorial high aperture focusing. The paraxial approximation cer-
tainly loses accuracy for larger values of defocus, but not nearly so much as in the
defocused widefield case. Yet significant differences remain between the two mod-
els, notably a one wave curvature aberration in the vectorial case, and this suggests
that vectorial high aperture theory will be important in the future design of high
aperture wavefront coding systems.

We can also look at the two models as providing an indication of the difference in
performance of CPM wavefront coding between low aperture and high aperture sys-
tems. The curvature aberration in the high aperture case varies with defocus, which
means that it cannot be incorporated into any 2D digital deconvolution scheme. This
effectively introduces an additional blurring of specimen features in planes away
from focus, lowering the depth of field boost achieved with the same CPM strength
in a low aperture wavefront coding system.

In general the CPM performs a little better at low apertures for EDF applications.
But the high aperture CPM system still maintains useful frequency response across
the full range of an equivalent widefield system, especially for on–axis frequencies.

4 Conclusion

Wavefront coding is a new approach to microscopy. Instead of avoiding aberra-
tions, we deliberately create and exploit them. The aperture of the imaging lens
still places fundamental limits on performance. However wavefront coding allows
us to trade off those limits between the different parameters we need for a given
imaging task. Focal range, signal to noise, mechanical focus scanning speed and
maximum frequency response are all negotiable using this digital–optical approach
to microscopy.

The high aperture experimental results presented here point to the significant
promise of wavefront coding. The theoretical simulations predict an altered be-
haviour for high apertures, which will become more important with higher SNR
imaging systems. For large values of defocus, these results predict a tighter limit
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on the focal range of EDF imaging than is the case for paraxial systems, as well as
additional potential for image artefacts due to aberrations.

The fundamental EDF behaviour remains in force at high apertures, as demon-
strated by both experiment and theory. This gives a solid foundation to build on. The
CPM was part of the first generation wavefront coding design. Using simulations,
new phase mask designs can be tested for performance at high apertures before fab-
rication. With this knowledge, further development of wavefront coding techniques
may be carried out, enhancing its use at high apertures.
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