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We designed an optical–digital system that delivers near-diffraction-limited imaging performance with a
large depth of field. This system is the standard incoherent optical system modified by a phase mask
with digital processing of the resulting intermediate image. The phase mask alters or codes the received
incoherent wave front in such a way that the point-spread function and the optical transfer function do
not change appreciably as a function of misfocus. Focus-independent digital filtering of the intermediate
image is used to produce a combined optical–digital system that has a nearly diffraction limited
point-spread function. This high-resolution extended depth of field is obtained through the expense of
an increased dynamic range of the incoherent system. We use both the ambiguity function and the
stationary-phase method to design these phase masks.
Key words: Extended depth of field, extended depth of focus, wave-front coding.
1. Introduction

Extending the depth of field of incoherent optical
systems has been an active research topic for many
years. The majority of the literature on this topic
has concernedmethods of employing an optical power-
absorbing apodizer, with possible 6 p phase varia-
tions, on a standard incoherent optical system as a
means to increase the depth of field.1–5 These meth-
ods have all suffered from two significant deficiencies:
a decrease of optical power at the image plane and a
decrease of image resolution. A unique method of
achieving an extended depth of field without an
apodizer6 was described in 1972. The major short-
coming of this method is that the focus must be varied
during exposure.
We describe a novel method for extending the depth

of field of incoherent optical systems that does not
suffer from the significant deficiencies of earlier
methods. Our method employs a phase mask to
modify the incoherent optical system in such a way
that the point-spread function 1PSF2 is insensitive to
misfocus, while the optical transfer function 1OTF2
has no regions of zero values within its passband.
The PSF of the modified optical system is not directly
comparable to that produced from a diffraction-
limited PSF. However, because the OTF has no
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regions of zeros, digital processing can be used to
restore the sampled intermediate image. Further,
because the OTF is insensitive to misfocus, the same
digital processing restores the image for all values of
misfocus. This combined optical–digital system pro-
duces a PSF that is comparable to that of the diffrac-
tion-limited PSF but over a far larger region of focus.
We term the general process of modifying the incoher-
ent optical system and the received incoherent wave
front, by means of a phase mask, wave-front coding.
By modifying only the phase of the received wave
front, general wave-front coding techniquesmaximize
optical power at the image plane.
When designing extended-depth-of-field systems,

wemake twomain assumptions. The first is that the
incoherent optical system is being modified by a
rectangularly separable phase mask. This leads to a
rectangularly separable PSF and OTF. Second, we
assume that any resulting image will be an intermedi-
ate image. This intermediate image will require
digital processing. This second assumption follows
from our belief that the best performance is obtained
by optimum preprocessing through optics, followed by
optimum digital postprocessing.7 These preprocess-
ing and postprocessing stages are optimum in the
sense that each is matched to the other in order to
solve an interesting problem.
Our solution to extended-depth-of-field systems re-

lies on the theory of the ambiguity function8–10 and
the stationary-phase11–13 method. The ambiguity
function can be used as a polar display of the OTF’s of
a rectangularly separable incoherent optical system
as a function of misfocus.10 Extended-depth-of-field
systems can be noticed almost by inspection of their
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corresponding ambiguity functions. The stationary-
phase method permits the design of phase masks
whose corresponding ambiguity functions have de-
sired extended-depth-of-field qualities.
In Section 2 we outline this method of designing

phase masks for extended-depth-of-field systems.
This design leads to the cubic-phase-modulation 1cubic-
pm2mask, which is introduced in Section 3. Through
simulated measurement of the width of the combined
optical–digital PSF, as well as through simulations of
imaging a spoke target, we show that this method can
produce an incoherent optical system with a large
depth of field with near-diffraction-limited imaging
performance. A complete mathematical derivation
of the cubic-pm mask function, based on the station-
ary-phase method, can be found inAppendixA.

2. Design of Extended-Depth-of-Field Systems

Through the use of the ambiguity function and the
stationary-phase method, phase masks for an ex-
tended-depth-of-field incoherent optical system are
readily found. The ambiguity function is an analyti-
cal tool that permits us to observe and to design OTF’s
for all values of misfocus at the same time. The
stationary-phase method provides the analytical flex-
ibility needed to consider only phase masks in this
design process.
Consider a one-dimensional unit-power phasemask

or phase function, in normalized coordinates, such as

P1x2 5 5
1

Œ2
exp3 ju1x24 for 0x 0 # 1

0 otherwise

, 112

where j 5 Œ21 and u1x2 is some unspecified nonlinear
function. Knowledge of this phase function deter-
mines the PSF and the OTF of the incoherent optical
system for all values of misfocus.14,15 We assume
that a two-dimensional rectangularly separable phase
mask will be used in practice. The one-dimensional
OTF, as a function of misfocus, is given by

H1u, c2 5 e 5P1x 1 u@22exp3 j1x 1 u@222c46

3 5P*1x 2 u@22exp32j1x 2 u@222c46dx 122

with spatial frequency u and misfocus parameter c.
The symbol * denotes the complex conjugate. The
misfocus parameter, c, is dependent on the physical
lens size as well as the focus state:

c 5
pL2

4l 11f 2
1

do
2

1

di2 5
2p

l
W20 5 kW20, 132

where L is the one-dimensional length of the lens
aperture and l is the wavelength of the light. The
distance do is measured between the object and the
first principal plane of the lens, and di is the distance
between the second principal plane and the image
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plane. The quantity f is the focal length of the lens.
The wave number is given by k, and the traditional
misfocus aberration constant is given by W20. The
traditional or Hopkins criterion for misfocus16 is
equivalent to c < 1.
The ambiguity function related to this general

mask can be used as a polar display of the OTF for all
values of misfocus.10 The ambiguity function of the
mask P1x2 is given by 8,9

A1u, v2 5 e P1x 1 u@22P*1x 2 u@22exp1 j2pvx2dx.

142

From Eqs. 122 and 142 the ambiguity function can be
shown to be related to the OTF of the system gener-
ated by P1x2, as10

H1u, c2 5 A1u, uc@p2. 152

Or, the projection of the point 1u, uc@p2 of the ambigu-
ity function onto the horizontal u axis yields the OTF
for spatial frequency u and misfocus c. In this way
the two-dimensional ambiguity function can be used
to determine the one-dimensional OTF for all values
of misfocus.
As an example of the utility of the ambiguity

function approach to visualizing misfocus OTF’s, con-
sider the standard rectangularly separable incoher-
ent optical system. Such a system is formed with a
rectangular-pupil or mask function. Calculation of
the magnitude of the ambiguity function of this
one-dimensional rectangular function leads to the
image shown in Fig. 1. In this image, regions of
large power are given by dark shades. The majority
of power in the ambiguity function of the rectangular
aperture is concentrated along the v 5 0 axis, which
corresponds to the in-focus OTF. The radial line in
this figure has a slope of p@2.

Fig. 1. Ambiguity function of a rectangular aperture. The radial
line has a slope of p@2, corresponding to an OTF with misfocus c 5

p2@2.



Figure 2 shows a misfocused OTF related to the
rectangular aperture, or standard optical system.
The misfocus parameter for this OTF is c 5 p2@2.
From Eq. 152 the ambiguity function of Fig. 1 along the
radial line with a slope of p@2 describes this OTF.
By inspection of these two figures we can confirm this
relationship between the OTF and the ambiguity
function.
Extended-depth-of-field systems, or systems that

are insensitive to changes of focus, have ambiguity
functions that are not a function of the second param-
eter, here given as v. From Eq. 152, ambiguity func-
tions that are independent of the second parameter, v,
lead to OTF’s that are invariant to misfocus c. In
practice, extended-depth-of-field systems are those
with ambiguity functions approximately independent
of v over a relatively wide angular region about the u
axis. From the ambiguity function of Fig. 1 we can
immediately notice that a rectangular-pupil function
does not describe an extended-depth-of-field system.
By careful selection of the nonlinear function u1x2 of

the general mask given in Eq. 112 a phase function that
produces an ambiguity function with the desired
extended-depth-of-field characteristics can be found.
We term thismask the cubic-phase-modulation 1cubic-
pm2 mask. Section 3 describes this mask. See Ap-
pendixA for a derivation.

3. Cubic-Phase-Modulation Phase Mask

Modification of a standard incoherent optical system
by a cubic-pm phase mask produces intermediate
images that are insensitive to misfocus. Conceptu-
ally simple filtering techniques applied to these inter-
mediate images form a complete system that images
with high resolution and a large depth of field. The
cubic-pmmask, in normalized coordinates, is given by

P1x2 5 5
1

Œ2
exp1 jax32 for 0x 0 # 1

0 otherwise

0a 0 : 20, 162

Fig. 2. Misfocus OTF of the standard optical system with misfo-
cus parameter c 5 p2@2.
where the constant a controls the phase deviation.
The OTF of the incoherent system related to this
function can be approximated as

H1u, c2

< 51
p

12 0au 02
1@2

exp1 j au3

4 2 0a 0 : 20 u fi 0

1 u 5 0
. 172

See Appendix A for a derivation of this result. The
approximation of the OTF is independent of misfocus.
This can be inferred from the ambiguity function
related to the cubic-pm mask, with a 5 90, shown in
Fig. 3. The cubic-pm ambiguity function has uni-
form nonzero values distributed about the u axis.
Radial lines through the origin of this ambiguity
function have nearly the same values as a function of
angle for a broad range of angles. Hence the cu-
bic-pm mask should form an extended-depth-of-field
incoherent optical system. Figure 4 shows a compari-
son between the stationary-phase approximation and
the actual calculated OTF obtained by Eq. 122. The
smooth curve in this figure is the approximation of the
magnitude of the OTF; the other is the calculated
magnitude of the OTF. For this figure the constant a

of Eq. 162 was also selected as 90, and the misfocus
parameter, c, was set to 15. The approximation
holds for other values of misfocus as well as for the
phase of the OTF. See Fig. 5. This figure is a plot of
the magnitude of three misfocused OTF’s related to
the cubic-pm mask, with a 5 90. The misfocus
values of the three OTF’s are c equal to 0, 15, and 30.
These OTF’s are nearly constant with misfocus and
have no zeros. This is what makes it possible to use
one focus-independent digital filter to restore the
intermediate image. Figure 6 shows the dramatic
variation of the OTF’s of the standard optical system
with the same misfocus values. Also, the vertical
scale in Fig. 6 is different from that of Fig. 5.

Fig. 3. Magnitude of the ambiguity function of the cubic-pm
function with a 5 90. Radial lines through this function are
insensitive to angle for a broad range of angles.
10 April 1995 @ Vol. 34, No. 11 @ APPLIED OPTICS 1861



In order to illustrate the performance of the optical–
digital cubic-pm system for extended-depth-of-field
imaging, we present two methods of comparison.
These are the simulated measurement of the full
width at half-maximum amplitude 1FWHM2 of the
PSF as a function of misfocus and simulated imaging
of a spoke target at different misfocus values.
Comparison is made to the standard optical system in
both cases.
Figure 7 illustrates the FWHM criterion applied to

the standard optical system and the cubic-pm optical–
digital system. The width of the standard system
with no misfocus is normalized to unity. The width
of the PSF from the cubic-pm system after focus-
independent digital filtering is essentially constant
out to the normalized misfocus value of c 5 30.
From Eq. 132 we can show that the normalized
misfocus of c 5 30 is nearly 30 times that of the

Fig. 5. Magnitude of the OTF’s from the cubic-pm system with
a 5 90 and misfocus c of 0, 15, and 30.

Fig. 4. Magnitude of the OTF of the cubic-pm system with a 5 90
and misfocus c 5 15. The smooth curve is the stationary-phase
approximation of the OTF. The other curve is the calculated OTF.
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Hopkins criterion for misfocus,16 where W20 5 l@6.
As expected, the width of the PSF of the standard
system greatly increases with misfocus. The width
of the unfiltered or intermediate PSF of the cubic-pm
system would be much wider than that of the in-focus
PSF fom the standard system.
Figure 8 illustrates simulated imaging of a spoke

target with the cubic-pm optical–digital system, along
with a comparison of images from the standard
optical system. The cubic-pm optical–digital system
includes both the formation of the incoherent interme-
diate image and the focus-independent digital filter-
ing of this image. Without digital filtering the inter-
mediate imageswould be unrecognizable. The digital
filter used for this example was a simple inverse filter
that, when combined with the intermediate OTF of
approximation 172, resulted in a triangular system
OTF, in a least-squares sense. The left column of

Fig. 6. Magnitude of OTF’s from the standard optical system.
The solid curve denotes the OTF with misfocus c of 0, the dashed
curve is for c of 15, and the dashed–dotted curve is for c of
30. The vertical scale is different than that of Fig. 5.

Fig. 7. Normalized full width at half-maximumamplitude 1FWHM2
of the PSF of the cubic-pm optical–digital system with comparison
to that of the standard optical system.



this figure simulates imaging of a spoke target with a
standard optical system under varying degrees of
misfocus. The right column shows a simulation of
the same imaging conditions with the cubic-pm opti-
cal–digital system. The term mild misfocus corre-
sponds to c 5 5 or ,5 times the Hopkins criterion for
misfocus. The term extrememisfocus corresponds to
c 5 30 or ,30 times the Hopkins limit. The image of
the spoke target from the standard system is severely
degraded for even mild misfocus. The images from
the cubic-pm system are essentially constant with
misfocus, and the image quality is nearly the same as
that from the standard system with no misfocus.
Only a single digital filter is used for all values of
misfocus with the cubic-pm system. No single filter
can be applied to the misfocused images from the
standard system to correct for the effects of misfocus.
These simulations assumed a noise-free optical–

digital system. In practice, restoration of the inter-
mediate image through digital filtering will alter the
noise properties of the final image. As in other
restorative schemes, a signal-to-noise-ratio or dy-
namic-range premium is required at the image.
Different filtering schemes require different signal-to-

Fig. 8. Simulated images of a spoke target from a standard
optical system 1first column2 and a cubic-pm optical–digital system
1second column2. 1a2, 1b2 1Geometrically in focus; 1c2, 1d2 mild misfo-
cus; 1e2, 1f 2 extreme misfocus.
noise-ratio premiums. The simple inverse filtering
used here requires the largest premium. Othermore
complex filtering schemes would require less. The
least-squares inverse filter used for the simulations of
Figs. 7 and 8 has a transfer function, which is given in
Fig. 9. From approximation 172 the phase of this
filter is approximately cubic. The zero spatial fre-
quency component of this filter is normalized to unity.
With this filter the maximum magnification of any
spatial frequency component is approximately 20 dB.
An exaggerated estimate of the required signal-to-
noise-ratio premium for this simple filter is then
approximately 20 dB; required extra dynamic range
would be approximately 3.5 bits.
An algorithm-independent measure of the increase

in performance of the cubic-pm optical–digital system
over the standard system can be found from the
Fisher information of misfocus. Fisher information
is a measure used to describe the information content
of a given signal pertaining to a certain parameter.17,18
For an ideal focus-invariant system the Fisher infor-
mation of misfocus would be zero. In other words the
ideal focus-invariant system would produce an image
that contains no information pertaining to the focus
state. Such an image would not be a function of
misfocus. A system whose OTF has a large variation
with misfocus cannot employ a single focus-indepen-
dent digital filter to correct for misfocus. A focus-
dependent digital filter can be used if the focus state is
known a priori.
Assume that a general incoherent system is imag-

ing a point object, or one with a flat spatial frequency
spectrum. We can show that the Fisher information
of misfocus from this assumed application is

J1c2 5 e 0 ≠

≠c
H1u, c20

2

du, 182

where J1c2 is the traditional notation for the Fisher
information of the misfocus parameter c and H1u, c2
is the OTF.

Fig. 9. Magnitude of the digital filter transfer function used in
simulations of the cubic-pm optical–digital system.
10 April 1995 @ Vol. 34, No. 11 @ APPLIED OPTICS 1863



A ratio of the Fisher information related to the
standard system over the Fisher information related
to the cubic-pm system can be used as a measure of
performance of the cubic-pm system. When this
ratio is greater than unity, or 0 dB, the theoretical
variation with misfocus of the standard system ex-
ceeds that of the cubic-pm system. Again, the cu-
bic-pm system was chosen with the constant a from
Eq. 162 equal to 90. This ratio of the Fisher informa-
tion is given in Fig. 10. For example, the variation of
the OTF of the standard system at misfocus of c 5 10
is 20 dB larger than the variation of the OTF for the
cubic-pm optical–digital system. Increasing the con-
stant a of the cubic-pm system increases this differ-
ence in the variation of the OTF; decreasing a de-
creases the difference. The misfocus value at which
the Fisher information of misfocus is equal for the
standard and the cubic-pm system is monotonically
related to the parametera. Othermethods of charac-
terizing the performance of the cubic-pm optical–
digital system are currently under investigation.

4. Conclusion

Wehave presented amethod of modifying the phase of
an incoherent wave front to produce an incoherent
optical system with an extended depth of field. The
general method of modifying the phase of an incoher-
ent wave front is termed wave-front coding. When
combined with digital filtering of intermediate im-
ages, this wave-front coded system delivers near-
diffraction-limited performance with a large depth of
field and with maximum optical power at the image
plane.

Appendix A: Stationary-Phase Derivation of the
Cubic-Phase-Modulation Optical Transfer Function

Through the stationary-phase method applied to the
ambiguity function we can find an ambiguity function

Fig. 10. Ratio of the Fisher information of misfocus, assuming a
point object, of the standard optical system over the Fisher
information of misfocus for the cubic-pm optical–digital system.
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1and its associated phase function2 that is independent
of the second parameter, here called v. Such ambigu-
ity functions define incoherent optical systems insen-
sitive to misfocus.
The ambiguity function of the general phase mask

or function, given in Eq. 112, is

A1u, v25
1

2e
21120u 0@22

1120u 0@22

exp3 ju1x1u@224

3 exp32ju1x2u@224exp1 j2pvx2dx, 0u 0# 2.

1A12

Let us assume that the nonlinear function u1x2 is some
monomial

u1x2 5 axg, g fi 50, 16, a fi 0. 1A22

This form of u1x2 will result in a mathematically
tractable solution. We can then rewrite Eq. 1A12 as

A1u, v25
1

2e
21120u 0@22

1120u 0@22

exp3 ja1x1u@22g4

3 exp32ja1x2u@22g4exp1 j2pvx2dx, 0u 0# 2

5
1

2e
21110u 0@22

1120u 0@22

exp3 jq1x24exp1 j2pvx2dx, 0u 0# 2;

1A32

where

q1x2 5 a31x 1 u@22g 2 1x 2 u@22g4. 1A42

If the phase term q1x2 varies fast enough, the above
integral can be approximated through the stationary
point of 3q1x2 1 2pvx4. This is the general idea behind
the stationary-phase method, first described by Lord
Kelvin. Contemporary researchers have applied the
stationary-phase method to the ambiguity function.
The stationary-phase approximation for A1u, v2 is
given by11–13

A1u, v2 <
1

2 3
2p

0q91xi2 04
1@2

exp3 jf1v24

5
1

2 10
≠xi
≠v 0 2

1@2

exp3 jf1v24, 1A52

where xi is the stationary point and

f1v2 5 2pvxi 1 q1xi2. 1A62

From approximation 1A52 the magnitude of the
ambiguity function will be independent of its second
parameter v when the second derivative of q1xi2 with
respect to xi is independent of v, or, equivalently,
when stationary point xi is linear in v. In order to
find stationary point xi, we can begin by taking the
derivative of Eq. 1A62 and setting the result equal to



zero. We obtain

1≠@≠xi232pvxi 1 q1xi24 5 0,

2pv 1 ga1xi 1 u@22g21 2 ga1xi 2 u@22g21 5 0. 1A72

We can show that the solution for xi above, as a
function of g, will be linear in v if and only if g 5 3.
The needed mask will then have a cubic phase profile.
We term this cubic phase modulation, or a cubic-pm
mask. This cubic-pm function has a stationary point
of

xi 5
2pv

3au
, u fi 0. 1A82

The stationary-phase approximation to the magni-
tude of the ambiguity function of the cubic-pm system
is then

0A1u, v2 0 <
1

2 10
≠xi
≠v 02

1@2

5 1 p

12 0au 02
1@2

, u fi 0. 1A92

Using Eqs. 1A42, 1A62, and 1A82, we can find that the
phase term of this ambiguity function, f1v2, from Eq.
1A62, is given by

f1v2 <
au3

4
2

p2v2

3au
, u fi 0. 1A102

Combining both themagnitude and the phase approxi-
mations, we have

A1u, v2 < 1 p

12 0au 02
1@2

exp1 j au3

4 2exp12 j
p2v2

3au 2 ,
u fi 0. 1A112

From Eq. 152 the resulting approximation to the OTF
of the cubic-pm system is then given by

H1u, c2 < 1 p

12 0au 02
1@2

exp1 j au3

4 2exp12j
c2u

3a 2 ,
u fi 0. 1A122

The magnitude of the approximate OTF above is
independent of themisfocus parameter,c. The phase
approximation contains two terms, however. One
term is independent of misfocus, the other is not.
Specifically, the second of the phase terms,
exp12jc2u@3a2, is a function of misfocus c and is a
linear phase term in u. Such a term has the effect of
merely shifting the location of the resulting point-
spread function 1PSF2 with large misfocus. Fortu-
nately, this term can be controlled through the
constant a. Large values of a, from Eq. 1A22, mini-
mize the sensitivity of the cubic-pm system to move-
ment of the PSF with misfocus. In practice this
misfocus-dependent term can be effectively controlled
so as to be negligible. The final approximation for
the OTF is then

H1u, c2 < 1 p

12 0au 02
1@2

exp1 j au3

4 2 for large 0a 0,

u fi 0. 1A132

It is easy to show from Eq. 1A12 that H10, c2 5
1. The stationary-phase approximations are valid
for large space–bandwidth-product 1SBP2 functions.8,9
The definition of a large SBP is usually accepted to be
greater than 100. With the general mask of Eq. 112
the spatial extent is 2. The bandwidth of this gen-
eral mask is given by its maximum instantaneous
frequency. Because instantaneous frequency is the
derivative of phase, the bandwidth of the general
mask is

BW 5 max
x

≠

≠x
u1x2 5 max

x

≠

≠x
ax3 5 3a. 1A142

The SBP of the cubic-pmmask must then satisfy

SBP 5 213a2 5 6a : 100

or approximately

a : 20.
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