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Depth of field challenge
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Hardware depth of field solution

+ Stop down! (use smaller aperture)

+ problem: noise

Traditional Optical System Image Stopped Down Traditional System Image

http://www.cdm-optics.com/site/publications.php
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Why you need shallow depth of field::.

Photo with
fake shallow
depth of field
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Why you need shallow depth of field+.

Original
photo
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Today’s plan

+ Remove blur computationally
e Understand blur

A bit of Fourier analysis
e Deconvolution

* Noise, optimal deconvolution, frequency response

+ Computational optics for DoF extension

e single image capture + deconvolution

+ Focal stack

e Multiple-exposure solution
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Blur: Linear shift-invariant filtering

* Replace each pixel by a linear combination of
its neighbors.

—only depends on relative position of neighbors

* The prescription for the linear combination is
called the “convolution kernel”.

1015 |3 0/0 10
415 |1 0/0.50 7
11 |7 O[1 0.5
Local image data kernel Modified image data

(shown at one pixel)
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Convolution
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Blurring

coefficient
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Pixel offset

original Blurred (filter
applied in both
dimensions).
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Studying convolution

» Convolution is complicated

—But at least it's linear
(f+kg)- h = f-h +k (g-h)

* We want to find a better expression

—Let’s study functions whose behavior is simple
under convolution

Thursday, February 11, 2010



Blurring: convolution

A
2
| ® Il
0 _I__LJ__I_._I_L Convolution

Input S1gh Kernel

A
. Same shape, just reduced contrast!!!
| This 1s an eigenvector

(output 1s the input multiplied by a
0 __I__l_'_l_L_l_L constant)

Output
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Convolution theorem

A convolution in the primal is a multiplication in Fourier

Primal Fourier

feg < > FG

l.e. Fourier bases are eigenvectors of convolution
(convolution is diagonal in the Fourier domain)
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Big Motivation for Fourier analysis

» (Complex) sine waves are eigenvectors of
the convolution operator

—They diagonalize convolution
—Convolution theorem
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Second motivation for Fourier
analysis: sampling

* The sampling grid is a periodic structure
— Fourier is pretty good at handling that

« Sampling is a linear process
— (but not shift-invariant)
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Sampling

* |If we're lucky, sampling density is enough

Input Reconstructed
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Sampling

* If we Insufficiently sample the signal, it may be
mistaken for something simpler during
reconstruction (that's aliasing!)
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Recap: motivation for sine waves

 Blurring sine waves is simple
—You get the same sine wave, just scaled down

—The sine functions are the eigenvectors of the
convolution operator

» Sampling sine waves is interesting
—Get another sine wave
—Not necessarily the same one! (aliasing)

If we represent functions (or images) with a sum of
sine waves, convolution and sampling are easy to
study
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Questions?
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Fourier as change of basis
» Shuffle the data to reveal other information

» E.g., take average & difference: matrix o5 4
|85 =l |
Ba§is Basis Basis
\ function 1 function 1 function 2 [
3 i_ 3
2 O O 2
1 1
0 Basis 0
function 2
Signal Geometrl.c After rotation Pseudo-
interpretation

Fourier
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Fourier as change of basis

« Same thing with infinite-dimensional vectors

Ba§is Basis ! Basis
function 1 function 1 function 2
I—T
|T |

Basis | N
function 2

A\Vi

\¥ \

Geometric

, ) After rotation Pseudo-
interpretation

Fourier

Signal
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Questions?

21
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Other presentations of Fourier

» Start with Fourier series with periodic signal

* Heat equation

—more or less special case of convolution
—Iterate -> exponential on eigenvalues

22
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Motivations

* Insights & mathematical beauty
» Sampling rate and filtering bandwidth

» Computation bases
—FFT: faster convolution

—E.q. finite elements, fast filtering, heat equation,
vibration modes

» Optics: wave nature of light & diffraction
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Primal vs. dual

» Often, we use the Fourier domain only for
analysis
—convergence, well-posedness

* Computation is performed in the primal

* |n other cases, computation is better in
Fourier

—faster because diagonal

24
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Questions?
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Can we undo blur?

original

Blurred original
Not easy, even when we know the kernel
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Recall convolution theorem

+ Convolution in space 1s a multiplication in Fourier

+ Note y the observed blurry image and
x the original sharp one

+ y=g®ux 1n the spatial domain

+ Y=GX in the Fourier domain
e A frequency does not depend on the other ones
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Invert the convolution theorem

+ Given y=g®x and g, we seek an estimate x of x

+ How do you invert a multiplication?

e Division!

+ X(0)=Y(0)/G(w)

+ DECONVOLUTION IS A DIVISION IN THE
FOURIER DOMAIN !

+ Which means it 1s also a convolution 1n the spatial
domain, by the inverse Fourier transform of 1/G

Thursday, February 11, 2010



Questions?

+ Given y=g®x and g, we seek an estimate x of x

+ How do you invert a multiplication?

e Division!

+ X(0)=Y(0)/G(w)

+ DECONVOLUTION IS A DIVISION IN THE
FOURIER DOMAIN !

+ Which means it 1s also a convolution 1n the spatial
domain, by the inverse Fourier transform of 1/G
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Potential problem?

+ Deconvolution 1s a division 1n the Fourier domain

+ Division by zero 1s bad!

e Information 1s lost at the zeros of the kernel spectrum G
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Noise problem

+ Even when there 1s no zero, noise 1s a big problem
+ If G has small number, division amplifies noise

+ 1t y=g®x+v where v 1s additive noise

+ Y=GX+V

+ X'=(GX+V)/G
= X+V/G

+ Vs amplified by 1/G. This 1s why you typically

get more high-frequency noise with deconvolution
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Noise problem

blurry, no noise deconvolved

A
A i

o o

“http://www.mathworks.com/products/demos/image/deblur_wiener/deblur.html
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Questions?
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Noise: extreme case

+ f G(w) =0=>Y(®)=V(w)
+ what 1s the best estimate of X(w)?
X' (w) =0
+ Even if G (w)=tiny, dividing by tiny 1s a bad 1dea

and something much closer to zero 1s better

+ The strategy should depend on the relative noise
¢ low noise: just divide

 high noise: under-estimate, closer to zero
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Noise, even without convolution

+ y=X+V

+ or 1n Fourier Y=X+V

Test image with AWGN (additive White Gaussian Noise)
o2 = 400
but centered inside a

256x256 empty image
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Noise, even without convolution

+ Say we know that E(X?)=1, E(V?)=16
e Pretty bad signal noise ratio!

+ We observe Y=X+V=5
+ It's more likely to be X=0.5 +V=4.5 than X=4+V=1

+ How can we optimize our bet?
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http://www.norbertwiener.umd.edu/NW/index.html t

Wiener denoising

+ Optimal estimation
given known noise and signal powers

+ Derive 1n Fourier domain because SNR 1s best
known per frequency

e Spectrum of images usually falls off as 1/w?
e Noise 1s often white (flat spectrum) or high frequency

Test image with AWGN After Wiener filtering
o2 = 400 MSE=121 (256x256 image)
but centered inside a =~ MSE=1232 (portion shown)
256x256 empty image
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Wiener denoising (in Fourier)

+ Given Y=X+V, find X’=HY to minimize E(IIX-X'l?)
+ argmin E(IIX-HYI?) => argmin E(IIX-H(X+V)Il?)
+ argmin E(II(1-H)X-HVII?)

+ X and N are assumec

' independent, E(XV)=0

expand and 1gnore cross terms

+ argmin I1-HIZE(IXI12)+I[HII2

+ derive wrt H, set to zero

+ (2H-2) E(IXI2)+2H |

+ H=E(IXI2)/

2(IVII2)

2(1IVI12) =0

E(IXII2+EIVII1%)
+ divide by E(IIXII?) to get a function of SNR

1

1/SNR
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Wiener denoising

1
1+1/SNR

+ When SNR 1s high, gain goes towards 1

s

+ When SNR 1s low, gain goes to zero

Test image with AWGN After Wiener filtering
o2 = 400 MSE=121 (256x256 image)
but centered inside a =~ MSE=1232 (portion shown)
256x256 empty image
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Questions?
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Back to convolution

+ Assume we know the expect noise power
spectrum and expected signal power spectrum

+ Can we tweak 1/G to reduce output noise ?

+ Maybe if we use something smaller than 1/G
e we won't amplify noise as much

e but the inversion won'’t be as correct
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http://www.norbertwiener.umd.edu/NW/index.html t

Wiener deconvolution

+ Find the gain H that minimize [IX’'(w)-X(w)II?

where X'=HY

+ We need to know the signal noise ratio

SNR(m)=E(IX(0)2)/E(IV(m)?)

+ Optimal filter

1

G(w)

G(w)|*

G (W)]* +1/SNR(w) |

+ See http://en.wikipedia.org/wiki/
Wiener deconvolution

e careful, their notations are different from mine
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Wiener deconvolution derivation

Find H to minimize [IX'(®)-X(0)!I* where X’=HY
argmin E(IIHY-XI?)=>argmin E(IIH(XG+V)-XII?)
argmin E(II((HG-1)X+HVII?)

X and N are assumed independent: E(XV)=0

Expand and ignore cross terms

argmin [|[HG-1IPE(IXI?) +[IHIPE(IVI?)

E(IXI?) and E(IVI?) given by expected spectrum
argminl/HG-11I> +1/SNR [[HII?

it AR SRR <

it Teh ot i letics o

derive wrt H, set to zero, get Wiener

[ remove m for simplicity
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Wiener result

Original Image Elurred and Noisy Image

e e TR
a B : 2y

Image Recovered by Normal Deconvolution Image Recovered by VWiener Deconvolution

http://cnx.org/content/m15167/latest/
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Questions?
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Note

+ Wiener 1s derived 1n Fourier domain

+ But in some cases, can be applied directly in
primal

+ In particular when SNR is 1/w?
e Rely on image gradient
e min lly-x®gll* + kIVx/?
- where k depends on SNR
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At a high level

+ Wiener can be seen as an example of
regularization with a prior on the signal

+ We know the power spectrum

+ Other priors are possible

» Sparsity of the gradient
e other filters

+ Active 1dea in computer vision
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Recap

+ Fourier bases diagonalize convolution

e Convolution > multiplication in Fourier
+ Naive deconvolution 1s division

+ Optimal deconvolution takes SNR into account

! Gl
G(w) [|GW)]2+1/SNR(w)._

+ Deconvolution quality depends on blur frequency
response

 We want a high blur spectrum
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Questions?

+ Fourler bases diagonalize convolution

e Convolution > multiplication in Fourier
+ Naive deconvolution 1s division

+ Optimal deconvolution takes SNR into account

1 G(w)*
G(w) [IG(w)|* +1/SNR(w)_

+ Deconvolution quality depends on blur frequency
response
¢ We want a high blur spectrum

Thursday, February 11, 2010



Blind deconvolution

+ So far we have assumed we know the kernel

+ When both « and g are unknown, badly ill-posed

e It 1s called blind deconvolution

+ See e.g.

o htt:

b://[www.wisdom.weizmann.ac.1l/~levina/papers/

deconvlevinEtal09-MIT-TR.pdf

¢ htt:

b://cs.nyu.edu/~fergus/research/deblur.html
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Questions?
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Is depth of field a blur?

P
r I|'_ | |__ |
_|_ L o | |

~ CSAlL

* Depth of field is NOT a
convolution of the image

» The circle of confusion varies =

with depth

* There are interesting
occlusion effects

* (If you really want a

convolution, there is one, but
in the light field...)

From Macro Photography
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Wavefront coding

« CDM-Optics, U of Colorado, Boulder
 Improve depth of field using weird optics & deconvolution

e http://www.cdm-optics.com/site/publications.php

— The worst title ever: "A New Paradigm for Imaging Systems", Cathey and
Dowski, Appl. Optics, 2002

Single-cell algae imaged without wavefront coding. Single-cell algae imaged with wavefront coding.
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Wavefront coding

* Idea: deconvolution to deblur out of focus regions
* Problem 1: depth of field blur is not shift-invariant
—Depends on depth

=>»If depth of field is not a convolution,
1t's harder to use deconvolution ;-(

* Problem 2: Depth of field blur "kills information"

—Fourier transform of blurring kernel has low frequency
response

Thursday, February 11, 2010



Wavefront coding

* Idea: deconvolution to deblur out of focus regions
—Problem 1: depth of field blur 1s not shift-invariant
—Problem 2: Depth of field blur "kills information"

* Solution: change optical system so that
—Rays don't converge anymore
—Image blur 1s the same for all depth
—Blur spectrum 1s higher

Thursday, February 11, 2010



Wavefront coding

C5AIL

* Idea: deconvolution to deblur out of focus regions
—Problem 1: depth of field blur 1s not shift-invariant
—Problem 2: Depth of field blur "kills information"

* Solution: change optical system so that
—Rays don't converge anymore
—Image blur 1s the same for all depth
—Blur spectrum 1s higher

 How it's done
—Phase plate (cubic lens z=y>+x7)

—Will do things similar to spherical aberrations

Thursday, February 11, 2010



Ray version Sesan

FRAYS FROM A TRADITIONAL INAGING SYSTEM FAYS FROM A WARAVEFRONT COoDING IMAGING SYESTEM

EXFANDED VIEW OF RAYS FROM A EXFARANDED VIEW OF FRAYSE FROM A
TRADITIONAL IMAGING SYSTEM WARVEFRONT CODING INAGING SYSETEM

Thursday, February 11, 2010



C5AIL

(A) (B)

(C) (D)

Fig. 3. PSFs associated with the rays of Fig. 2. The PSFs for a
normal system are shown for (A) in focus and (B) out of focus. The
PSF's for a coded system are shown (C) in the normal region of focus
and (D) in the out-of-focus region.

Thursday, February 11, 2010



Frequency response (MTF) el
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Spatial Frequency

Fig. 5. MTFs corresponding with the PSF's of Fig. 3 for a conven-
tional 1image 1n and out of focus and a coded 1mage for the same
misfocus values.
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Results

Traditional Optical System Image Intermediate Extended Depth of Field Image

9

Stopped Down Traditional System Image Final Wavefront Coded™ Image
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Questions?
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Philosophy: Image capture

+ A sensor placed alone 1n the
middle of the visual world
does not record an i1mage
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Image capture

+ Pinhole

allows you to
select light
rays

Thursday, February 11, 2010



Image formation: optics

+ Optics forms
an 1mage:
selects and
Integrates

hight rays
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Image formation: computation

+ The combination of optics & computation forms the
image: selects and combines rays

4 ™ 4 N ,\\\‘\
: ’ . Generalized |
Computation .
optics
g J . g )/
Final Intermediate

1mage optical image
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Computational imaging goals

+ Better capture information

+ Form image as a post-process

4 ™ 4 N ,\\\‘\
: ’ . Generalized |
Computation .
optics
g J . g )/
Final Intermediate

1mage optical image

Thursday, February 11, 2010



Better capture information

+ Same as communication theory:
optics encodes , computation decodes

+ Code seeks to minimize distortion
4 ) 4 .
,’ : Generalized
Computation .
optics
\_ J \_
Final Intermediate

1mage

optical image
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Form 1images as a post-process

+ The computational part of formation can be done later
and multiple times

+ e.g., enable refocusing

4 AN - = 4 TR
,! ’ : = Generalized |
Computation | & .
optics
. J . - )/
Final Intermediate

1mage optical image
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Questions?
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* Tomography

— e.g. http://en.wikipedia.org/wiki/
Computed axial tomography

— Lots of cool Fourier transforms there
* X-ray telescopes & coded aperture

— e.g. http://universe.gsfc.nasa.gov/cai/coded intr.html

 Radar, synthetic aperture

 Raskar's motion blur %

* and to some extend, Bayer mosaics e
&

Detector plane

See Berthold Horn's course at MIT

Shadow pattern
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http://en.wikipedia.org/wiki/Computed_axial_tomography
http://en.wikipedia.org/wiki/Computed_axial_tomography
http://en.wikipedia.org/wiki/Computed_axial_tomography
http://en.wikipedia.org/wiki/Computed_axial_tomography

Other computational depth of field extension

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Focus sweep Wavefront coding Coded aperture
Hausler 72
Nagahara et al. 08

Levin et al. 07
Veeraraghavan et al. 07

7

Dowski & Cathey 94

N

Depth-invariant blur Depth-varying blur
Depth estimation required

And in next slide,
lattice focal lens

Levin et al. 09
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New solution: The lattice-focal lens

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Levin et al. 09: assembly of subsquares with
different focal powers

. each element focuses on a different depth

toy lattice-focal lens
with 4 elements

Thursday, February 11, 2010
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Hardware construction

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Proof of concept

* 12 subsquares cut from
plano-convex spherical
lenses

* Attached to main lens

extra focal power
- needed very low

* Modest DOF extension
with only 12 subsquares

Thursday, February 11, 2010
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Depth estimation

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

* Defocus kernels vary with depth

& 5 ‘-' :Af. defocus kernels at

__ ; | different depths

* Depth estimation as for the coded aperture camera
[Levin et al. 07]

depth map

Thursday, February 11, 2010
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[Lattice tocal lens

. ?'u
- A

Standard lens image L attice-focal lens: all-focused output
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Theory of Remote image Formation

-_— ey
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Depth of field analysis

* How do different cameras compare?
* What is the best that can be done?




Our new theoretical analysis

+ http:// www.wisdom.weizmann.ac.l/~levina/papers/lattice/

+ In the 4D hght field

e Fouriler analysis

+ Shows that only a 3D subset of | | f
the 4D s.pectl.‘um is usetul Only a 3D subset of the
(dlmensmnahty gap) 4D spectrum 1s useful

+ Inspires new lens design:
lattice-focal lens

Previous designs spend energy
outside the useful subset
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Comparison of different cameras

(a) upper bound (b) standard lens. focused at 5o = 0.5 (¢) coded aperture, focused at 5o = 0

Q

(e) wave front coding
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Comparing image reconstruction (simulation)

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

standard coded focus wavefront lattice-focal
lens aperture sweep coding lens

Object at in-focus depth
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Focal stack DoF extensions e

« Capture N images focused at different distances

* For each output pixel, choose the sharpest image
—e.g. look at local variance, gradient.

From Agarwala et al.
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Focal stack
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Montage
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MR
Macro montage e

* 55 images here
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Focal stack & plenoptic camera <.

Light Field Photography with a Hand-Held Plenoptic
Camera, Ren Ng, Marc Levoy, Mathieu Bredif, Gene Duval,
Mark Horowitz, Pat Hanrahan

* Capture light field

 Refocus to create focal stack

* Use photomontage to
generate all-focus image
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From Ng et al. http://
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/papers/licamera/

Figure 15: Left: Extended depth of field computed from a stack of pho-
tographs focused at different depths. Right: A single sub-aperture image,
which has equal depth of field but is noisier.
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Scanning: combination in 1 exposure ca.

Macrophotography scanning moved forward and backward by

device. The subject is lit by a fine a slow and regular movement

ray of light with a thickness less that is controlled by a motorized

than the depth of field; the lens micrometer. This device, which

can be used with average aper- can be made by a meticulous OISO T Lo
tures that provide maximum handyman, lets you take spectac-

sharpness. Mounted on a stand ular shots of large insects with

with a headless screw, it is total depth of field.
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From Macro photograj
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