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Outhne

+ pinhole cameras

+ thin lenses

e graphical constructions, algebraic formulae

+ lenses in cameras

e focal length, sensor size

+ thick lenses

e stops, pupils, perspective transformations

+ exposure

e aperture, shutter speed (ISO comes later)

+ depth of field

+ aberrations...




Cutaway view of a real lens

Vivitar Series 1 90mm {/2.5
Cover photo, Kingslake, Optics tn Photography




Lens quality varies

+ Why 1s this toy so expensive?
e EF 70-200mm {/2.8LL IS USM
e $1700

+ Why 1s 1t better than this toy?
e EF 70-300mm {/4-5.6 IS USM
¢ $550

+ Why 1s 1t so complicated?




) . Panasonic 45-200/4-5.6 Leica 90mm/2.8 Elmarit-M
Stantord Blg Dish zoom, at 200mm /4.6 prime, at /4

Panasonic GF1 $300 $2000




Zoom lens versus prime lens

&

The-Digital-Picture.com Reviews

Canon 100-400mm/4.5-5.6 Canon 300mm/2.8

zoom, at 300mm and {/5.6 prime, at /5.6
$1600 $4300




Why not use sensors without optics?

(London)

+ each point on sensor would record the integral of
light arriving from every point on subject

+ all sensor points would record similar colors




Pinhole camera

camera obscura)
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Pinhole photography

+ no distortion

o straight lines remain straight

+ 1nfinite depth of field

e everything is 1n focus

PINHOLE
PHOTOGRAPHY

Rediscovering a Historic Technique

ERIC RENNER

(Bami Adedoyin)
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Large pinhole causes geometric blur

Photograph made with small pinhole

(London)
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Small pinhole causes diffraction blur

+ smaller aperture means more diffraction

+ due to wave nature of light
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Examples

+ large pinhole

— geometric blur

+ small pinhole
— diffraction blur

+ optimal pinhole
— very little light

(Hecht)

0.35 mm

(.07 mm
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Replacing the pinhole with a lens

Photograph made with small pinhole

(London)
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Physical versus geometrical optics

Optical system

(Hecht)

+ light can be modeled as traveling waves
+ the perpendiculars to these waves can be drawn as rays
+ diffraction causes these rays to bend, e.g. at a slit

+ geometrical optics assumes
e A—0
e no diffraction

e in free space, rays are straight (a.k.a. rectilinear propagation)
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Snell’s law of refraction

(Hecht)

X

+ as waves chc:mge Z siné, E
speed at an 1nterface,
they also change direction AECHE = aEE

+ index of refraction N i1s defined as the ratio between the
speed of light in a vaccum / speed in some medium
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Typical refractive indices ()

¢ air = 1.0
AR e AT
+ glass == 15618

+ when transiting from air to glass,
light bends towards the normal %

+ when transiting from glass to air, &
light bends away from the normal

+ light striking a surface perpendicularly does not bend




Q. What shape should an interface be

to make parallel rays converge to a point?

(Hecht)

A. a hyperbola
+ so lenses should be hyperbolic!
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Spherical lenses

(Hecht) (wikipedia)

+ two roughly ﬁtting curved surfaces ground together
will eventually become spherical

+ spheres don’t bring parallel rays to a point
e this is called vpherical aberration

e nearly axial rays (paraxial rays) behave best
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Paraxial approximation

+ assume e =0
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Paraxial approximation

If we express u in radians, we can say these
expressions are approximately equal (<),
rather than wmerely proportional (<) as |
I« q said in class. For example, sin(10°) =
0.1736 and 10° in radians = 0.1745. See
how close these values are? In keeping with
this cleaner explanation, I've changed all
“="and “=” to “=" in this sequence of slides.
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+ assume e = 0

+ assume SINU =h/| = u (for Uin radians)

= snEieCSE e

+ assumetanu = sinu = u




The paraxial approximation 1s
a.k.a. first-order optics

¢3 ¢5 ¢7
+ assume first termof S = ¢——+-———+ .
=5l
*lLe. sin ) = O
ho s
+ assume first term of COS¢® = 1- (/;! + qj” - % +
*je. cosd =1
esotan = sinp = ¢ 1 S

0.8}

081 — sin(phi)

——cos(phi)
0.4+ —tan(phi)

0 S 10 15 20




Paraxial focusing

Snell’s law:

SRS S
paraxial approximation:

e =NE
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Paraxial focusing

Given object distance Z,

what 1s image distance z’ ?
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Paraxial focusing

n(u+a) = n'(a—u’)
nthiz+thl/r) = n(hir—hilz)

n/z+n/r = n'/r=-n'/Z

e =NE

+ h has canceled out, so any ray from P will focus to P’
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Focal length

What happens it z 1s oo ? n/z+n/r =n'/r-n'/Z

n/r = n'/r—-n'/z

72 A A,

+ f 2 focal length =7’

25
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Focusing of rays versus waves

rays from inﬁnity
= plane waves

—f‘—

(Hecht)

iy

rays converging to
a focus =
spherical waves

S — T—
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[Lensmaker’s formula

+ using similar derivations, one can extend these results to
two spherical interfaces forming a lens 1n air

(Hecht, edited)

+ as d — 0 (thwn lens approximation),
we obtain the lensmaker’s formula
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Gaussian lens formula

+ Starting from the lensmaker’s formula

i & 1 — (nl _1) (i T i)’ (Hecht, eqn 5.15)

+ and recalling that as object distance So 1s moved to infinity,
1mage distance Si becomes focal length fi, we get

it s 1
s (nl —1) (— — —] (Hecht, eqn 5.16)

e e (Hecht, eqn 5.17)
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Gauss' ray tracing construction

+ assume that parallel rays converge to a point
located at focal length /' from lens

+ and rays going through center of lens are not deviated

e hence same perspective as pinhole

=
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) o o
Gauss' ray tracing construction

+ rays coming from points on a plane parallel
to the lens are focused on another plane
parallel to the lens
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From Gauss's ray construction
to the Gaussian lens formula

object / 1mage
Y |
______ ~
/ Y
< ~
________________________ —

+ positive § 1s rightward, positive S, 1s leftward

+ positive y 1s upward
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From Gauss's ray construction
to the Gaussian lens formula

object / 1mage
Y?\/
______ ~
/ Y
< ~
________________________ —
Wl - s
yO SO




From Gauss's ray construction
to the Gaussian lens formula

f (positive is to right of lens)

object image
S [
/ Y
& S
"""""""""""" ==
M = i and M — S = 1 + 1 = E
yO SO yo f SO S f

33




34

Changing the focus distance

s
+ to focus on objects o
at different distances, o @>% Sensor
move sensor relative to lens




Changing the focus distance

¢
+ to focus on objects =
at different distances, ., E>°| sensor
move sensor relative to lens

| | ‘
+ ats, =§ = 2f — [
ife have 1:1 imaging, because | 42 |

i ik g
= =

S

In 1:1 imaging, if the sensor 1s
36mm wide, an object 36mm

1
wide will fill the frame. o S f




Changing the focus distance

s
+ to focus on objects =
at different distances, E>| Sensor
move sensor relative to lens

‘|
4+ ats =§ = 2f
we have 1:1 imaging, because
= ’I

2f 21 f [ J

+ can'’t focus on objects v
: 1 4 5 1
closer to lens than its e
focal length f SEe f




Changing the focal length

+ weaker lenses
have longer

focal lengths

+ to stay in focus,
move the sensor

further back

6" ~
o FOCAL LENGTH

(Kingslake)
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Changing the focal length

+ weaker lenses
have longer

focal lengths

+ to stay in focus,
move the sensor

further back

+ 1if the sensor
size 1s constant,

the field of view

becomes smaller

FOV=2arctan(h/2f)

(Kingslake)




Focal length and field of view

1000 mm

500 mm

300 mm

21/2°

50

80

135 mm

85 mm

18°

28°

50 mm

28 mm

17 mm

47°

75°

104°

39

FOV measured diagonally on a
35mm full-frame camera (24 x 36mm)

(London)

© 2010 Marc Levoy
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Focal length and field of view

1000 mm D1/5°
500 mm 5°
300 mm 8°
135 mm 18°
85 mm 28°
50 mm 47°
28 mm 75°
17 mm 104°
: FOV measured diagonally on a
e\ Vv

35mm full-frame camera (24 x 36mm)

(London)
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Changing the

Ssensor size

+ 1if the sensor
size 1s smaller,

the field of view

1s smaller too

+ smaller sensors
either have fewer
pixels, or noiser
pixels

= 3

FOCAL LENGTH

s 6" —]
FOCAL LENGT

(Kingslake)
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Full-tframe 35mm versus APS-C

+ full-frame sensor is 24 x 36mm (same as 35mm film)
+ APS-Csensoris 14.8 x 22.2mm (Canon DSLRs)

+ conversion factor is 1.6x

(dpreview)
Case 1 - Digital SLR and 35mm film camera use a lens with the SAME focal length.

sssssss ssssssns
+ switching camera bodies

* object occupies the same (3
number of pixels, but
takes up more of frame

© 2003 Vincent Bockaert

Case 2 - Digital SLR uses lens with SHORTER focal length than a 35mm film camera.

ssssssss ssssssss
* objects occupies fewer @
pixels, but composition |
stays the same ssssssns ssssssse

+ switching lenses
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Sensor sizes

36x24mm (35mm format)

28.7x19.1mm (EOS 1D) = 1.26x magnification factor

APS-C sized sensors (EOS 10D, Nikon D100, Pentax *ist D, etc) = 1.5x - 1.6x
18x13.5mm (4/3" system - Olympus E-1)

8.8x6.6mm (2/3" P&S)

7.2x5.3mm (1/1.8") 5.3x4mm (1/2.7")

~Panasonic GF1

~Nikon D40

~Canon A590




Changing the focal length

versus changing the viewpoint

(a)

(Kingslake)
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wide-angle telephoto

+ changing the focal length lets us move back from a
subject, while maintaining its size on the image

+ but moving back changes perspective relationships
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Convex versus concave lenses

(Hecht)

rays from a convex lens converge rays from a concave lens diverge

+ positive focal length f means parallel rays from the left
converge to a point on the right

+ negative focal length f means parallel rays from the left
converge to a point on the left (dashed lines above)




Convex versus concave lenses

(Hecht)

rays from a convex lens converge rays from a concave lens diverge

|

...producing a real image ...producing a virtual image
46 © 2010 Marc Levoy




Convex versus concave lenses

TR iieria

Y and there

‘e moment, mmm 3
ent of a sphere, o,

¥ ... we a virtual image P (s <
grof V). With S farther :ma) IS bmage wy
- 0 and therefore on the right- -hand side). l=»

ase, cach point on o, has a conjugate point on m

on a straight line through C. Within the yestria
paraxial theory, these surfaces can be considered ; U'dl e
Thus a small planar object normal o the opti”
will be i intoamllplamrregmnalw ‘-'w

..producing a real image ...producing a virtual image
47




48

The power of a lens

+ units are meters!

+ a.k.a. diopters

+ my eyeglasses have the prescription
e right eye: -0.75 diopters
o left eye: -1.00 diopters

Q. What's wrong with me?
A. Myopia

(wikipedia)
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Thick lenses

4+ an optical system may contain many lenses,
but can be characterized by a few numbers

OPTICAL SYSTEM
PRINCIPAL "PLANES"

SECOND PRINCIPAL POINT
SECOND FOCAL POINT

(ucnr RAYS FROM LEFT \

o 32 I..--_..
>— —>

FIRST PRINCIPAL
OPTICAL AXIS __ POINT
- FFL——st | i fe——~BFL. -
FIRST FOCAL T Wi "
POINT \"?t““’j = S

(Smith)
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Stops

(Hecht)

+ 1n photographic lenses, the aperture stop (A.S.) 1s typically in
the middle of the lens system

+ 1n a digital camera, the field stop (F.S.) 1s the edge of the sensor;
no physical stop 1s needed




&l

(Hecht)

pupil

Pupils T

Marginal ray

Chief ray

+ the entrance pupil is the 1image of the aperture stop
as seen from an axial point on the object

+ the exet pupil is the image of the aperture stop
as seen from an axial point on the image plane

(wikipedia)

+ the center of the entrance pupil is the center of perspective

+ you can find this point by following two lines of sight
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Lenses perform a 3D perspective transform

DERD)

http://graphics.stanford.edu/courses/
cs178/applets/thinlens.html

(Hecht)

+ lenses transform a 3D object to a 3D image;
the sensor extracts a 2D slice from that image

+ as an object moves linearly (in Z),
its image moves non-proportionately (in Z)

+ as you move a lens linearly,
the in-focus object plane moves non-proportionately

+ asyou refocus a camera, the image changes size |
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Exposure

=l

+ exposure = irradiance x time

+ irradiance (E)
e controlled by aperture

+ exposure time (T)
e controlled by shutter
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Shutters

Leaf shutter

U

iy

+ quiet

+ Slow

(max 1/500s)

+ need one
per lens

Focal-plane shutter

+ loud

TG
(max 1/4000)

+ distorts motion

(London)




Jacques-Henr1 Lartigue, Grand Prix (1912)
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Shutter speed

+ controls how long the sensor 1s exposed to light

+ linear effect on exposure until sensor saturates

+ denoted 1n fractions of a second:

= AR DRI S B PR SR 8 el By

+ normal humans can hand-hold down to 1/60 second
o rule of thumb: shortest exposure = 1/f
e e.g. 1/600 second for a 500mm lens




Main side-eftect of shutter speed

+ motion blur

+ halving shutter speed doubles motion blur

Slow shutter speed Fast shutter speed

(London)

57




Aperture

+ 1rradiance on sensor 1s proportional to
 square of aperture diameter A

e inverse square of distance to sensor (~ focal length /)

+ so that aperture values give irradiance regardless of lens,
aperture number N 1s defined relative to focal length

f
N = —
A
e £/2.0 on a 50mm lens means the aperture 1s 25mm

e {/2.0 on a 100mm lens means the aperture is 50mm

~. low F-number (N) on long zooms require fat lenses

+ doubling N reduces A by 2x, hence light by 4x
e going from {/2.0 to /4.0 cuts light by 4x
e to cut light by 2x, increase N by V2

58
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How low can N be?

(Kingslake)

+ principal planes are the paraxial approximation of a
spherical “equivalent refracting surface”

1
29n6

+ lowest possible N in air 1s £/0.5

N =

: . Canon ES 50mm /1.0
+ lowest N in SLLR lenses 1s {/1.0 (discontinued)




Cinematography by candlelight

Stanley Kubrick,
Barry Lyndon,
1975

+ Zeiss 50mm {/0.7 Planar lens

e originally developed for NASA’s Apollo missions
e very shallow depth of field in closeups (small object distance)

60
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Cinematography by candlelight

Stanley Kubrick,
Barry Lyndon,
1975

+ Zeiss 50mm {/0.7 Planar lens

e originally developed for NASA’s Apollo missions
e very shallow depth of field in closeups (small object distance)
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Microscope objectives

10 IMMERSION OBJECTIVE LENS
OBJECT SIDE IMAGE SIDE

G1

AR

10A
142
13 24 25

22 23
14 15 16 17 1819 dk 20 21

+ numerical aperture NA=nsin 6

+ for dry objectives, N = 1/2 NA
+ s0 40x/ 0.95NA objective = {/0.51 (on object side)!
=




Main side-effect of aperture

+ depth of field
+ doubling N (two {/stops) doubles depth of field

Large aperture opening Small aperture opening

(London)
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Trading off motion blur and depth of field

oY A" A‘ &N ' N /7N
W§ ‘l‘ ‘LV’ q/\‘? ‘\/ ) ‘\v) ‘\ )
116 /11 /8 15

f/2.8 f/2
50

20200003

(London) :




