

Artistic Enhancement in Scientific Visualization

Victoria Interrante Computer Science and Engineering University of Minnesota-Twin Cities

Visualizing Anatomy

- A photographic depiction captures the exact appearance of the object as we actually see it
- Subtle, complex details of coloration and texture are fully represented, with great accuracy

Photograph of the right hip bone (lateral aspe Johannes W. Rohen and Chihiro Yokochi. <u>Color Atlas of Anatomy:</u> <u>A Photographic Study of the Human Body</u>, Igaku-Shoin, 1993.

Photo vs. Drawing in Archaeology

Photo vs. Drawing

Hand-drawn illustrations are routinely used to emphasize important features that are difficult to capture in a photograph, while minimizing secondary detail

Drawings are also useful to portray information that cannot be captured or represented photographically, such as hidden surfaces

Study of Picture Preferences

Realistic

Patent Ductus Arteriosus

Esophageal Fundoplication

K. Hirsch and D. A. McConathy, "Picture Preferences of Thoracic Surgeons", Journal of BioCommunications, Winter 1986, pp. 26-30.

Study of Picture Preferences

Patent Ductus Arteriosus

Wedge Resection

Esophageal Fundoplication

K. Hirsch and D. A. McConathy, "Picture Preferences of Thoracic Surgeons", Journal of BioCommunications, Winter 1986, pp. 26-30.

Artistic Enhancement in Scientific Visualization

Victoria Interrante Computer Science and Engineering University of Minnesota-Twin Cities

Extended Line Types

- Principal directions and lines of curvature
- Parabolic lines
- Attached and unattached shadows
- Isoluminance and luminance extrema
- Highlights

<section-header>

Gaussian Curvature

 K_1 = curvature in first principal direction K_2 = curvature in second principal direction Gaussian curvature: $K = K_1 K_2$ <u>Mean curvature:</u> $H = (K_1 + K_2) / 2$

K > 0 : elliptic, convex or concave
K < 0 : hyperbolic, saddle-shaped
K = 0 : parabolic, cylindrical or planar

Definitions [Koenderink]

Rim – the closed space curve on the shape that makes up the silhouette; the space curve is smooth and has no discontinuities except when the surface is discontinuous; the rim is not a plane curve!

Contour – the projection of the rim; the projection may have singularities

Silhouette – the visible part of the contour

Generic Position

- 1. Perturbed ray meets in two points
- 2. Enter, leave, enter: cusp or contour ends
- 3. Self-intersection

Good views are in generic position

Kt = tangential curvature Kr = radial curvature (along the line of sight) Kr Kt = K (the Gaussian Curvature)

- Cannot see concave regions of the surface
- Convex Kt > 0, convex region of the surface
- Concave Kt < 0, hyperbolic region of the surface
- Inflection points along parabolic lines

Koenderink

- The visible end of a contour must lie on a hyperbolic surface
- At the end point, the direction of view is along the aymptote (0 curvature)

At the end point, the contour is concave

Parabolic Lines

- 1. Segmentation of the object into convex, concave and saddle-shaped regions
- 2. Inflection points of the visual contour
- 3. Changes of topology of the contour with viewpoint changes
- 4. Qualitative structure of the illuminance distribution
- 5. Loci that create and annihilate highlights

Types of Lines

Haloed lines Taper near t-junction (See Dooley and Cohen) Eye-lashing (Guild) Sketchiness (Strothotte) Conventions in engineering drawing

Martin, Technical Illustration

Summary

Illustrations often better than photographs

- Enhance important features
- Deemphasize unimportant detail

Grand challenge

- Produce a good line drawing
- What lines, not just how to draw lines

