Perception and Cognition

Perception and Cognition

- 1. Discrimination and steps
- 2. Judging magnitude
- 3. Preattentive features and serial search
- 4. Multiple visual attributes

Detection

Just-Noticable Difference

JND

$$\Delta S = k \frac{\Delta I}{I}$$

Steps in value

■ 100:1 contrast

Ratios more important than magnitude

Steps

Most variations in values are perceived as steps

Steps in value

For example: contour map

Steps in size and orientation

- Orientation columns roughly 30 deg
- Receptive fields increase by roughly a factor of 2

6 7 8 9 10 11 12 14 16 18 21 24 36 48 60 72

Estimating Magnitude

Exponents of Power Law

Sensation	Exponent
Loudness	0.6
Brightness	0.33
Smell	0.55 (Coffee) - 0.6 (Heptane)
Taste	0.6 (Saccharine) -1.3 (Salt)
Temperature	1.0 (Cold) – 1.6 (Warm)
Vibration	0.6 (250 Hz) - 0.95 (60 Hz)
Duration	1.1
Pressure	1.1
Heaviness	1.45
Electic Shock	3.5

From Table 2.

S. S. Stevens, Psychophysics of Sensory Function,

Graduated Sphere Map

FIGURE 7.4. An eye-catching map created using three-dimensional geometric symbols. (After Smith, 1928. First published in *The Geographical Review*, 18(3), plate 4. Reprinted with permission of the American Geographical Society.)

W. S. Cleveland, R. McGill, Graphical perception: Theory, experiments and application to the development of graphical methods, JASA 39, pp. 531-554, 1984

Page 8

Preattentive vs. Attentive

Preattentive Features

Line (blob) orientation Julesz & Bergen [1983]; Wolfe et al. [1992]

Length Triesman & Gormican [1988]

Width Julesz [1985]

Colour (hue)

Binocular lustre

Intensity

Flicker

Size Triesman & Gelade [1980]
Curvature Triesman & Gormican [1988]

Number Julesz [1985]; Trick & Pylyshyn [1994]

Terminators Julesz & Bergen [1983] Intersection Julesz & Bergen [1983]

Closure Enns [1986]; Triesman & Souther [1985]

Nagy & Sanchez [1990, 1992];

D'Zmura [1991]; Kawai et al. [1995];

Bauer et al. [1996] Beck et al. [1983];

Triesman & Gormican [1988]

Julesz [1971]

Direction of motion Nakayama & Silverman [1986];

Driver & McLeod [1992] Wolfe & Franzel [1988]

Stereoscopic depth Nakayama & Silverman [1986]

3-D depth cues Enns [1990]
Lighting direction Enns [1990]

Preattentive Conjunctions

Shape and Lightnesss

Preattentive Conjunctions

Motion and disparity is conjunctive

Motion is separable with color and shape

Disparity is separable with color and shape

Multiple Attributes

One-dimensional: Lightness		
White	White	
White	Black	
Black	Black	
White	White	
Black	White	

Speeded Classification

Filtering interference

Difficulty in ignoring one dimension while attending to the other

Redundancy gain

Facilitation in reading one dimension when the other provides redundant information

Types of Dimensions

Integral

Filtering interference and redundancy gain

Separable

No interference or gain

Configural

Only interference, but no redundancy gain

VALUE IN MILLIONS OF DOLLARS VALUE IN MILLIONS OF DOLLARS 1-25 26-50 51-100 101-200 201-500 W. S. Dobson, Visual information processing and cartographic communication: The role of redundant stimulus dimensions, 1983 (reprinted in MacEachren, 1995)

Small Multiples

Envisioning Information, E. Tufte

- Operation of trains, p. 68
- Historical and cultural atlas of China, p. 74

Layering

Envisioning Information, E. Tufte

- IBM Copier, p. 54
- Stravinsky score, p. 59