
Penetration Depth of Two Convex Polytopes in 3D�

Pankaj K. Agarwaly Leonidas J. Guibasz Sariel Har-Peledx

Alexander Rabinovitch{ Micha Sharirk

October 9, 2000

Abstract

Let A and B be two convex polytopes in R3 with m and n facets, respectively. The
penetration depth of A and B, denoted as �(A;B), is the minimum distance by which
A has to be translated so that A and B do not intersect. We present a randomized
algorithm that computes �(A;B) in O(m3=4+"n3=4+" + m1+" + n1+") expected time,
for any constant " > 0. It also computes a vector t such that ktk = �(A;B) and
int(A + t) \ B = ;. We show that if the Minkowski sum B � (�A) has K facets, then
the expected running time of our algorithm is O

�
K1=2+"m1=4n1=4 +m1+" + n1+"

�
, for

any " > 0.
We also present an approximation algorithm for computing �(A;B). For any � > 0,

we can compute, in time O(m + n + (log2(m + n))=�), a vector t such that ktk �
(1+�)�(A;B) and int(A+t)\B = ;. Our result also gives a �-approximation algorithm
for computing the width of A in time O(n + (log2 n)=�), which is simpler and slightly
faster than the recent algorithm by Chan [3].

�Work by P.A. was supported by Army Research O�ce MURI grant DAAH04-96-1-0013, by a Sloan
fellowship, by NSF grants EIA{9870724, and CCR{9732787, and by a grant from the U.S.-Israeli Binational
Science Foundation. Work by L.G. was supported in part by National Science Foundation grant CCR{
9623851 and by US Army MURI grant 5{23542{A. Work by S.H.-P. was supported by Army Research
O�ce MURI grant DAAH04-96-1-0013. Work by M.S. was supported by NSF Grants CCR-97-32101, CCR-
94-24398, by grants from the U.S.-Israeli Binational Science Foundation, the G.I.F., the German-Israeli
Foundation for Scienti�c Research and Development, and the ESPRIT IV LTR project No. 21957 (CGAL),
and by the Hermann Minkowski{MINERVA Center for Geometry at Tel Aviv University.

yCenter for Geometric Computing, Department of Computer Science, Box 90129, Duke University,
Durham, NC 27708-0129, USA. E-mail: pankaj@cs.duke.edu

zComputer Graphics Laboratory, Computer Science Department, Stanford University, Stanford
CA 94305 E-mail: guibas@cs.stanford.edu

xCenter for Geometric Computing, Department of Computer Science, Box 90129, Duke University,
Durham, NC 27708-0129, USA. Current address: Department of Computer Science, University of Illinois
at Urbana-Champaign, Urbana, IL 61801-2987. E-mail: sariel@cs.uiuc.edu

{Synopsys Inc., 154 Crane Meadow Rd, Suite 300, Marlboro, MA 01752, USA. E-mail:
alexra@synopsys.com

kSchool of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel; and Courant Institute of
Mathematical Sciences, New York University, New York, NY 10012, USA. E-mail: sharir@math.tau.ac.il

1



A

B

A� (�B)

O

u

O

Figure 1: (a) Two convex polygons A and B. (b) Minkowski sum P = A� (�B); u is the
closest point from O to @P , so �(A;B) = kOuk.

1 Introduction

Let A and B be two convex polytopes in R
3 , with m and n facets, respectively. The

penetration depth of A and B, denoted as �(A;B), is de�ned as

�(A;B) = minfktk j int(A+ t) \B = ;; t 2 R
3g:

See Figure 1. One of the motivations for this problem comes from the �eld of robotics.
Consider, for instance, the problem of collision detection in robot motion planning, where
distance between objects is measured in the Euclideanmetric. Numerous e�cient algorithms
are known for computing the minimum distance between two polyhedra in two and three
dimensions (see [6, 9]). Whenever two objects intersect, this distance measure is zero. Thus,
it fails to provide any information about the extent of penetration. The penetration depth
is a useful and natural measure of this extent [2, 11]. In addition, penetration depth can
be a useful quantity to have available during physical simulations. Such simulations sample
a moving system during discrete time steps and detect collisions between objects using
a variety of methods. When a collision is detected, a penetration has usually occurred,
because of the discrete time sampling. The penetration depth of the colliding bodies can
be very useful in computing how to roll the simulation back to the instant of �rst contact,
and in estimating the impulse force required for the appropriate collision response.

The problem is closely related to that of computing the width of a convex polytope A.
The width of A is the shortest distance between any pair of parallel planes that support
A. We will note below that �(A;A) = width(A). Thus the penetration depth is a natural
extension of width. The best algorithm known for computing the width is by Agarwal
and Sharir [1]; it is a randomized algorithm that runs in O(n3=2+") expected time, for any
constant " > 0. Their algorithm is based on a randomized algorithm, presented in [1], for
computing the closest bichromatic pair of lines for two \vertically-separated" sets L and L0

1



of lines in R3 (see below for a more precise de�nition), in expected time O(jLj3=4+"jL0j3=4+"+
jLj1+" + jL0j1+"), for any " > 0. We use their closest-pair algorithm for computing �(A;B)
in expected time O(m3=4+"n3=4+"+m1+"+n1+"), for any " > 0. Actually, we will show that
if the number of facets of the Minkowski sum B � (�A) is K, then the expected running
time of the algorithm is O(K1=2+"m1=4n1=4 +m1+" + n1+"), for any " > 0. This is, to the
best of our knowledge, the �rst subquadratic algorithm for computing �(A;B).

Dobkin et al. [8] showed that A and B can be preprocessed in O(m + n) time so that,
for a direction u, the distance by which A has to be translated in direction u to separate
it from B, denoted as �(u), can be computed in O(log2(m + n)) time. We use this result
to obtain a simple approximation algorithm for computing �(A;B). In particular, for any
given � > 0, we present an O(m + n + (log2(m + n))=�)-time algorithm for computing a
vector t such that int(A+ t) \B = ; and ktk � (1 + �)�(A;B).

Our results imply an \output-sensitive" algorithm or computing the width of a convex
polytope A with n facets in randomized expected time O(K1=2+"n1=2 + n1+"), where K is
the number of facets in A� (�A), and a (1+�)-approximation algorithm for computing the
width of A in time O(n+(log2 n)=�). This approximation algorithm is simpler and slightly
faster than the recent algorithm by Chan [3], which computes a (1 + �)-approximation of
width(A) in time O(n + (logc n)=�) for some constant c > 2. We also present an O(m +
n + k log2(m + n))-time algorithm for computing the exact penetration depth under any
polyhedral metric, where k is the number of vertices in the polytope de�ning the metric. We
also present an alternative algorithm that is likely to be more e�cient when the penetration
is shallow. Both of these algorithms are based on the technique used in the approximation
algorithm.

2 Computing the Penetration Depth

2.1 Penetration depth and width

Before describing the algorithm for computing �(A;B), we note the relationship between
the penetration depth of two polytopes and the width of a polytope.

Proposition 2.1 For any convex polytope P in R
3 , width(P ) = �(P; P ).

Proof: Let � denote the length of the shortest translation vector that separates two initially-
identical copies of P . Let v be a vector realizing the width of P ; that is, v is a shortest
vector for which there exists a plane h such that P lies between h and h + v. Clearly,
int(P +v)\ int(P ) = ;, and therefore � � kvk = width(P ). As for the other direction, let u
be a shortest separating translation vector. Clearly, P and P +u touch each other but have
disjoint interiors. Thus, there is a plane H that separates the interiors of P and P +u, and
intersects both P and P + u. In particular, P lies between the two planes H and H � u.
Since the distance between H and H � u is kuk, it follows that

width(P ) � d(H;H � u) = kuk:

2



This proposition suggests that we attempt to modify the width algorithm by Agarwal
and Sharir [1] to compute �(A;B), which is indeed what we proceed to do. Conversely, we
will also specialize the new techniques developed in this paper to obtain new approximation
and output-sensitive algorithms for computing width(A).

2.2 A general exact algorithm

Let A and B be two convex polytopes as de�ned above. Using linear programming, we can
determine in O(m + n) time whether A and B intersect [7]. If A and B do not intersect,
then we set �(A;B) = 0 and stop. So we assume that A \ B 6= ;. We also assume that
the vertices of A and B are in general position. There are standard techniques, e.g., those
based on perturbations, to handle situations where this assumption does not hold.

We can formulate the problem of computing �(A;B) in terms of the con�guration space

that represents all possible placements of A relative to (the �xed) B. That is, A turns into a
point p(A) and B turns into the Minkowski sum B�(�A) = fx�y j x 2 B; y 2 Ag. Let us
assume that the initial location of the point p(A) corresponding to A in the con�guration
space is the origin O of the coordinate system. Note that p(A) is inside the polytope
P = B� (�A) if and only if A (in the corresponding translated placement) and B intersect.
By construction, it follows that

�(A;B) = minfd(O; x) j x 2 @Pg:
Let x be a point on the boundary of P so that d(x;O) = d(O;P). Then �!Ox is orthogonal
to the facet of P containing x. Otherwise, we could obtain an even shorter distance from
O to @P, which is impossible. Therefore, d(x;O) is attained as a shortest distance between
O and a plane that contains the corresponding facet of P. In particular, we can compute
the penetration distance by computing the distance between the origin and all the planes
that support a facet of P.

Every facet of P is attained as a Minkowski sum of the form g�(�f), where g is a facet,
edge, or vertex of B and f is, respectively, a vertex, edge, or facet of A. It is well known
that there are only O(m+ n) facets of P for which g is a facet or a vertex of B (and f is a
vertex or a facet of A), and they can all be found in O((m+ n) log(m+ n)) time (see e.g.
[5]). Hence, determining the minimum distance from O to all these facets can be done in
near-linear time. The problem is to handle facets that are of the form e� (�e0) such that e
is an edge of B and e0 is an edge of A. In the worst case, there can be 
(mn) such facets.
However, not every such pair necessarily generates a facet of P.

We construct a family of pairs of subsets of edges F = f(A1; B1); : : : ; (Au; Bu)g such
that the following �ve conditions hold.

(C1) Ai (resp. Bi) is a subset of the edges of A (resp. B).

(C2) Every pair (e0; e) 2 Ai �Bi generates a facet of P.
(C3) Every pair of edges that generate a facet of P appears in some Aj �Bj.

3



(C4) For each i, the lines supporting the edges in Ai and those inBi are vertically separated.
That is, either all lines supporting the edges of Ai lie above all lines supporting the
edges of Bi, or all of them lie below the lines supporting the edges of Bi.

(C5) F can be partitioned into two subfamilies FA and FB such that

(i) for every 0 � i � blog2mc, there are O((m=2i) logm) pairs (Aj ; Bj) in FA

for which 2i � jAj j < 2i+1. Let FA
i denote the subset of these pairs. ThenP

(Aj ;Bj)2FA
i
jBj j = O(n logn); and

(ii) for every 0 � i � blog2 nc, there are O((n=2i) log n) pairs (Aj ; Bj) in FB for
which 2i � jBj j < 2i+1. Let FB

i denote the subset of these pairs. ThenP
(Aj ;Bj)2FB

i
jAj j = O(m logm).

Note that condition (C5) implies that

uX
i=1

(jAij+ jBij) = O((m+ n) log2(m+ n)): (1)

Suppose we have such a decomposition at our disposal. Then we can compute �(A;B) as
follows. Recall that our goal is to compute the minimum distance from the origin to the
planes supporting the faces of P.

Algorithm: Penetration-Depth (A, B)

1. For each pair (f; g) such that f is a vertex or facet of A and g is a facet or vertex
of B, and g � (�f) is a facet of P, compute the distance from the origin to the
plane containing g � (�f). Let �� be the minimum of these distances.

2. For each pair (Ai; Bi) in the above decomposition, �nd the minimum distance �i

from the origin to an element in the set of planes

Hi = fa�(e� (�e0)) j e 2 Bi; e
0 2 Aig;

where a�(e � (�e0)) is the plane containing the facet of B � (�A) induced by e
and e0.

3. Return minf��;minif�igg.

The correctness of this algorithm is obvious. Step 1 considers all facets of P induced
by a vertex-facet pair of A and B. By Condition (C2), the algorithm considers only those
pairs of edges that generate facets of P, and by Condition (C3), the algorithm considers all
such pairs. It thus su�ces to show how to compute �i, for each pair (Ai; Bi), and how to
construct the family F .

4



Computing �i. Let (Ai; Bi) be a pair in F . Denote by Li and L0
i, respectively, the sets

of lines that contain the edges of Bi and Ai.

Lemma 2.2 For any pair (Ai; Bi) 2 F , �i = d(Li; L
0
i).

Proof: Let e 2 Bi and e0 2 Ai, and let ` and `0 be the lines that contain e and e0,
respectively. Consider the plane h = `� (�`0) = fx � y j x 2 `; y 2 `0g. Note that for any
two sets X and Y ,

d(O;X � (�Y )) = inffjjx� yjj j x 2 X; y 2 Y g = d(X;Y ):

Therefore d(O; h) = d(O; `� (�`0)) = d(`; `0). Thus,

�i = min
h2Hi

d(O; h)

= minfd(O; `� (�`0)) j ` 2 Li; `
0 2 L0

ig
= minfd(`; `0) j ` 2 Li; `

0 2 L0
ig

= d(Li; L
0
i):

By the above lemma, computing �i reduces to computing a closest bichromatic pair of
lines in Li � L0

i. Recall that by Condition (C4) on F , the lines in Li and L0
i are vertically

separated. Agarwal and Sharir [1] showed that under this condition, the closest pair in
Li�L0

i can be computed in expected time O(jLij3=4+"jL0
ij3=4+"+jLij1+"+jL0

ij1+"). Summing
this bound over all pairs in F and using property (C5), routine calculation yields that the
total time spent in computing all the �i's is O(m

3=4+"n3=4+"+m1+"+n1+"), for any " > 0.

Computing F . Our decomposition is based on the following observation. Let M denote
the Gaussian diagram (or normal diagram) of B. M is a spherical map on the unit sphere
S
2. The vertices of M are points on S

2, each representing the direction of the outward
normal of a facet of B, the edges of M are great circular arcs, each being the locus of the
outward normal directions of all planes supporting B at some �xed edge, and the faces of
M are regions, each being the locus of outward normal directions of all planes supporting
B at a vertex. M can be computed in linear time from B. Let M0 be the similarly-de�ned
normal diagram of �A. Consider the superposition of M and M0. Each intersection point
between an arc ofM and an arc ofM0, representing respectively an edge e of B and an edge
e0 of A, gives us a direction u which is orthogonal to the plane containing the Minkowski
sum e � (�e0). Furthermore, e � (�e0) is a real facet of B � (�A). It follows that a pair
of edges of A and B generates a face of B � (�A) if and only if the corresponding arcs
intersect in the overlapped diagram. Note that the number of such arc intersections on this
diagram can be 
(mn).

Our goal is thus to decompose the set of all pairs of intersecting arcs of M and M0.
Without loss of generality, assume that no intersection point ofM andM0 lies on the equa-
tor. (We can either handle these intersections separately, or perform a random simultaneous

5



rotation on M and M0.) If an arc of M or M0 crosses the equator, we split it into two by
adding a vertex on the arc at the equator. Hence each arc lies completely in the upper or
the lower hemisphere. Let H denote the upper hemisphere of S2. We will describe how we
decompose the set of edges of A and B whose corresponding arcs intersect in H ; the lower
hemisphere is handled similarly.

Note that the arcs in M (and in M0) are pairwise disjoint. We centrally project the
arcs of M and M0 that lie in H onto the plane h : z = 1. Since each arc of M and M0 is
a portion of a great circle, it projects to a segment (or a ray) on h. Let E (resp. E0) be
the set of projected segments of arcs inM (resp.M0). By construction, the interiors of the
segments in E (or E0) are pairwise disjoint.

As described in [4], we decompose the set of intersecting pairs of segments in E and E0

into a family F 0 = f(E1; E
0
1); : : : ; (Eu; E

0
u)g as follows. We construct two segment trees TA

and TB on the segments of E and E0, respectively. Each node v of TA (resp. TB) corresponds
to a vertical strip, with an associated subset Ev � E (resp. E0

v � E0) that completely cross
the strip. For each such subset, we construct a balanced binary tree, sorted by the height
of those segments inside the strip (the segments do not intersect, and thus the ordering is
well de�ned). For each node w of this binary tree, we refer to the subset of segments stored
in the subtree rooted at w as a canonical subset.

For each segment e of E0 (resp. E), we �nd the nodes v of TA (resp. TB) such that
at least one endpoint of e lies inside the strip associated with the parent of v; there is a
logarithmic number of such nodes. We report all segments of Ev (resp. E

0
v) intersected by

the segment as the union of a logarithmic number of canonical subsets. After repeating
this step for all segments, for each canonical subset Ew of TA, we report the pair (Ew; E

0
w),

where E0
w is the subset of segments for which the query procedure returned Ew as one of the

canonical subsets. We do the same for the canonical subsets of TB. It is shown in [5] that
if segments e 2 E; e0 2 E0 intersect, then there is at least one such pair (Ez ; E

0
z) such that

e 2 Ez and e
0 2 E0

z, and that the total time spent and storage used is O((m+n) log(m+n)).
(Note that an intersecting pair (e; e0) may be reported twice in this algorithm|once when
searching with e and once when searching with e0.) Finally, for each pair (Ew; E

0
w), let Aw

(resp. Bw) be the set of corresponding edges of A and B. We add the pair (Aw; Bw) to F .
FA (resp. FB) is the subset of pairs corresponding to the canonical subsets of TA (resp. TB).
The argument in [5] shows that F satis�es conditions (C1){(C3) and (C5). Condition (C4)
follows from the following lemma.

Lemma 2.3 Let e be an edge of B and e0 an edge of A such that the corresponding arcs

intersect in H . Then the line supporting e lies above the line supporting e0.

Proof: Since the arcs corresponding to e and e0 intersect in H , the sum e� (�e0) is a facet
of B � (�A) with an outward normal direction u that points upwards. By construction
of the diagrams, there are planes h, h0 orthogonal to u and supporting, respectively, B at
e and A at e0. Moreover, relative to the direction u, B lies below h and A lies above h0.
It follows that since A and B intersect, the plane h is above the plane h0 relative to the
direction u. Thus also the line ` containing e is above the line `0 containing e0 relative to the

6



direction u. Recall that we assumed that the vertices of A and B are in general position, so,
in particular, there are no four coplanar vertices. Thus the lines ` and `0 are not parallel.
Let `0 be the unique upward-directed vertical line that passes through ` and `0. Since the
angle between `0 and u is smaller that �=2, and a line in direction u crosses h0 before h, it
follows that `0 also crosses h

0 (at a point on `0) before it crosses h (at a point on `). Hence
` lies vertically above `0, as claimed.

Hence, we conclude the following.

Theorem 2.4 Given two convex polytopes A, B in R
3 with m and n vertices, respec-

tively, the penetration depth of A and B can be computed in randomized expected time

O(m3=4+"n3=4+" +m1+" + n1+"), for any " > 0; the constant of proportionality depends on

".

2.3 An output-sensitive bound

Let K denote the number of facets in P = B � (�A). We derive a bound on the expected
running time of the algorithm that depends on K. Note that the pair (Ai; Bi) contributes
jAij � jBij facets to P. The expected running time of the algorithm is

uX
i=1

O
�
(jAijjBij)3=4+" + jAij1+" + jBij1+"

�
= O

 
K"

uX
i=1

(jAijjBij)3=4 +m1+" + n1+"

!
;

where we have used (1) in bounding the sums of the second and third terms.
We obtain a bound on

P
(Aj ;Bj)2FA(jAj jjBj j)3=4. A similar argument bounds the quan-

tity for pairs in FB . Let Ki =
P

(Aj ;Bj)2FA
i
jAj jjBj j be the number of facets contributed by

the pairs in FA
i . Recall that

��FA
i

�� = O((m=2i) logm). Using H�older's inequality, we obtain:

X
(Aj ;Bj)2FA

(jAj jjBj j)3=4 =

log2mX
i=0

X
(Aj ;Bj)2FA

i

(jAj jjBj j)3=4

�
log2mX
i=0

0
@ X

(Aj ;Bj)2FA
i

jAj jjBjj
1
A

3=4 ��FA
i

��1=4

�
log2mX
i=0

O

 
K

3=4
i

�
m logm

2i

�1=4
!

� O

0
@(m logm)1=4

log2mX
i=0

K
3=4
i

2i=4

1
A :

On the other hand, Ki � 2i+1
P

(Aj ;Bj)2FA
i
jBj j � c2in log n for a constant c > 1. The termP

iK
3=4
i =2i=4 is therefore maximized when Ki = c2in log n for 0 � i � log2

K
cn log n and 0

7



otherwise. Hence,

log2mX
i=0

K
3=4
i

2i=4
=

log2
K

cn log nX
i=0

O(2i=2(n log n)3=4) = O(
p
K(n logn)1=4):

Therefore
X

(Aj ;Bj)2FA

(jAj jjBj j)3=4 = O(
p
K(mn logm logn)1=4), and the same bound holds

for the sum over pairs in FB . We thus obtain the following.

Theorem 2.5 Given two intersecting convex polytopes A, B in R
3 with m and n vertices,

respectively, such that B � (�A) has K facets, one can compute the penetration depth of A
and B in randomized expected time O

�
K1=2+"m1=4n1=4 +m1+" + n1+"

�
for any " > 0.

An immediate corollary of the above theorem is the following.

Corollary 2.6 Given a convex polytope A in R
3 with n vertices such that A� (�A) has K

facets, one can compute the width of A in randomized expected time O
�
K1=2+"n1=2 + n1+"

�
for any " > 0.

3 An Approximation Algorithm

We now present an e�cient algorithm for approximating the penetration depth of A and
B. That is, for a given � > 0, the algorithm computes a translation vector t such that the
interiors of A+ t and B are disjoint and ktk � (1 + �)�(A;B). The algorithm is as follows.

Algorithm: Approx-Separation (A, B)

1. De�ne on the unit sphere of directions a grid G of points in the following manner:

Divide the interval of angles [0; �] into
l
c1=

p
�
m
subintervals of equal length,

delimited by the points 0 = p0; p1; � � � ; pdc1=p�e = �, where c1 is a constant
independent of �. Then the grid G is de�ned as the set of points

G =
n
(pi; 2pj) j 0 � i; j �

l
c1=

p
�
mo

;

where the points are given in spherical coordinates ('; �). The constant c1 is
chosen so that the spherical distance from any point on the sphere to its nearest
grid point is at most

p
�.

2. For each point p 2 G, perform the following ray-shooting query: Find the inter-
section point on the boundary of B � (�A) with the ray

�!
Op. Let �(p) be the

Euclidean distance from O to the boundary of B�(�A) in this direction. We will
explain below how the ray-shooting can be performed e�ciently without explicit
computation of the Minkowski sum.

3. Output � = minp2Gf�(p)g as an approximate solution.

8



v

u

�

Figure 2: Illustration of the proof of Lemma 3.1

Lemma 3.1 For any � > 0, algorithm Approx-Separation computes correctly a trans-

lation of length � that separates A and B, such that � � (1 + �)�(A;B).

Proof: Let v be the vector that realizes the penetration depth �(A;B). Let u be the
vector computed by the algorithm, as it ray-shoots in the direction which is closest (in
angular distance) to that of v. Clearly, the vector u, lying on the boundary of B � (�A),
separates A and B. Let � be the angle between v and u. By construction, � � p

�. See
Figure 2.

It is easy to verify that

jjujj � jjvjj
cos�

� jjvjj
1� �2=2

� (1 + �2)jjvjj � (1 + �)jjvjj:

The size of the grid built by theApprox-Separation algorithm isO(1=�). It was shown
by Dobkin et al. [8], that after a linear-time preprocessing of A and B into suitable data
structures, the shortest separation of A and B along any query direction u can be computed
in time O(log2(m + n)). This operation is equivalent to performing a ray shooting in the
direction u from the origin toward @P. Therefore, the total running time of the algorithm
Approx-Separation is O(m+ n+ (log2(m+ n))=�). We have thus shown:

Theorem 3.2 Given two convex polytopes A and B in R3 , with m and n facets, respectively,

and a parameter � > 0, one can compute, in time O(m+n+(log2(m+n))=�), a separating

translation for A and B whose length is at most (1 + �)�(A;B).

Applying Proposition 2.1, we also obtain the following corollary:

Corollary 3.3 For any � > 0, a (1 + �)-approximation of the width of a convex polytope

in R
3 with n facets can be computed in time O(n+ (log2 n)=�).

Remark: As a matter of fact, the Dobkin-Kirkpatrick hierarchical representations of two
convex polytopesA and B can be used to obtain e�cient implementation of various extremal
queries concerning the Minkowski sum B� (�A) without its explicit construction. See [12]
for details.

9



3.1 Penetration depth under polyhedral metrics

Another application of our approximation algorithm is to obtain a linear-time algorithm
for computing the penetration depth of of A and B under any polyhedral norm. Let Q
be a centrally-symmetric convex polytope with k vertices, and let jj � jjQ denote the norm
induced by Q. We observe that the jj � jjQ-distance from O to the boundary of P is equal to
the largest scaling factor � such that �Q � P. As is easily seen, a vertex of �Q must then
touch @P. Moreover, as � varies, each vertex of �Q traces a ray from the origin. Hence,
to �nd the largest �, we perform ray-shooting queries from O in each of the k directions of
the rays traced by the vertices of Q. For each of these ray-shooting queries, we compute
the scaling factor � that corresponds to the hitting point of that ray with @P. The smallest
of these values is the desired jj � jjQ-length of the shortest separating translation. We have
thus shown the following.

Corollary 3.4 Let A and B be two convex polytopes A and B in R
3 , with m and n

facets, respectively, and let Q be a convex polytope with k vertices. The shortest sepa-

rating translation of A and B under the polyhedral distance induced by Q can be computed

in O(m+ n+ k log2(m+ n)) time.

3.2 Handling shallow penetrations

If the penetration of A into B is relatively small, then one might expect that the following
combinatorial property holds in practice. Let � > 0 be a small parameter. Then the number
K� of facets of P = B � (�A) whose distance from the origin is at most (1 + �)�(A;B) is
small. If this is the case, then the following more e�cient algorithm computes �(A;B).

Algorithm: Shallow-Penetration (A, B)

1. Construct the grid G as in Algorithm Approx-Separation.

2. Using Algorithm Approx-Separation, compute a real value � such that � �
(1 + �=4)�(A;B).

3. Compute G0 = fu 2 G j �(u) � (1 + �=4)�g.
4. Let B be the ball of radius (1 + �=2)� � (1 + �)�(A;B) centered at the origin.

5. For each u 2 G0, do the following:

(i) Compute the face f of P supported by the plane orthogonal to u.

(ii) By performing an implicit breadth-�rst search on @P, compute the con-
nected component Cu of (@P) \ B that contains f . (If Cu = Cv for two
directions u 6= v, we compute the connected component Cu only once.)

(iii) Compute �u = minf2Cu d(O; f), where f is a facet of P in Cu.

6. Return minu2G0 �u.

10



Steps (1){(3) can be performed in O(m + n + (log2(m + n))=�) time as described in
the algorithm Approx-Separation. For a given u 2 G0, we can compute Cu in O((1 +
jCuj) log(m+ n)) time by locating u in the normal diagrams M and M0 and by traversing
the two diagrams simultaneously. We omit the easy details. Computing �u takes O(jCuj)
time. Since we traverse each connected component of (@P)\B at most once, the total time
spent in Step (5) is O((K�+1=�) log(m+n)), where K� is the number of facets of P that lies
within distance (1 + �)�(A;B) from O. The same argument as in Lemma 3.1 can be used
to show that the above algorithm computes all those connected components of (@P) \ B
that contain a facet within distance �(A;B) from O. Hence, minu2G0 �u = �(A;B). We
thus obtain the following.

Theorem 3.5 Given two convex polytopes A and B in R3 , with m and n facets, respectively,

and a parameter � > 0, one can compute �(A;B) in time O(m+n+K� log(m+n)+(log2(m+
n))=�), where K� is the number of facets of B � (�A) within distance (1 + �)�(A;B) from

the origin.

4 Conclusions

We presented the �rst subquadratic algorithm for computing the penetration depth of two
convex polytopes in R

3 , by showing that it is closely related to computing the width of
a convex polytope. We also presented simple, near-linear approximation algorithms. We
conclude by mentioning two open problems.

(i) Can the penetration depth of two convex polytopes be computed in near-linear time?

(ii) Is there an o(m3n3)-time algorithm for computing the penetration depth of two non-
convex polytopes in R3 with m and n facets, respectively? (An O(n6)-time solution is
obtained by explicit construction of the Minkowski sum B�(�A), where A;B are the
given polytoes.) Can one develop a fast approximation algorithm in this case? We
remark that if the two polytopes are star shaped then their penetration depth can be
computed in O(m2n2�(mn)) time, by constructing the (boundary of the) above sum
as the upper envelope of O(mn) triangles, as viewed from a common center point,
with respect to which both A and B are star-shaped (using an algorithm similar to
that in [10]).

Acknowledgments

The authors thank Boris Aronov for useful discussions and Ming Lin for pointing out a
couple of relevant references.

References

[1] P. K. Agarwal and M. Sharir. E�cient randomized algorithms for some geometric optimization
problems. Discrete Comput. Geom., 16 (1996), 317{337.

11



[2] S. Cameron. Enhancing GJK: Computing minimum and penetration distance between convex
polyhedra. In Proc. Int. Conf. Robot. Auto., 1997, 3112{3117.

[3] T.M. Chan. Approximating the diameter, width, smallest enclosing cylinder and minimum-
width annulus. In Proc. 16th Annu. ACM Sympos. Comput. Geom., 2000, 300{309.

[4] B. Chazelle, H. Edelsbrunner, L. J. Guibas, and M. Sharir. Diameter, width, closest line pair
and parametric searching. Discrete Comput. Geom., 10 (1993), 183{196.

[5] B. Chazelle, H. Edelsbrunner, L.J. Guibas, and M. Sharir. Algorithms for bichromatic line
segment problems and polyhedral terrains. Algorithmica, 11 (1994), 116{132.

[6] F. Chin and C. A. Wang. Optimal algorithms for the intersection and the minimum distance
problems between planar polygons. IEEE Trans. Comput., C-32 (1983), 1203{1207.

[7] M. de Berg, M. van Kreveld, M. H. Overmars, and O. Schwarzkopf. Computational Geometry:

Algorithms and Applications. Springer-Verlag, 1997.

[8] D. Dobkin, J. Hershberger, D. Kirkpatrick, and S. Suri. Computing the intersection-depth of
polyhedra. Algorithmica, 9 (1993), 518{533.

[9] D. P. Dobkin and D. G. Kirkpatrick. A linear algorithm for determining the separation of
convex polyhedra. J. Algorithms, 6 (1985), 381{392.

[10] H. Edelsbrunner, L.J. Guibas and M. Sharir, The upper envelope of piecewise linear functions:
algorithms and applications, Discrete Comput. Geom. 4 (1989), 311{336.

[11] E.G. Gilbert and C.J. Ong. New distances for the separation and penetration of objects. In
Proc. Int. Conf. Robot. Auto., 1994, 579{586.

[12] A. Rabinovich. Computing the shortest translation separating two convex polytopes in <3.
M.S. thesis, Dept. Computer Science, Tel Aviv University, Tel Aviv, Israel, 1999.

12


