Computing the Intersection-Depth of Polyhedra

David Dobkin* John Hershbergerf David Kirkpatrick?
Subhash Suri?

Abstract

Given two intersecting polyhedra P,) and a direction d, find the smallest
translation of ¢ along d that renders the interiors of P and @ disjoint. The
same problem can also be posed without specifying the direction, in which case
the minimum translation over all directions is sought. These are fundamental
problems that arise in robotics and computer vision. We develop techniques
for implicitly building and searching convolutions and apply them to derive
efficient algorithms for these problems.

1 Introduction

The computation of spatial relationships among geometric objects is a fundamental
problem in such areas as robotics, computer-aided design, VLSI layout, and computer
graphics. In a dynamic environment where objects are mobile, intersection or prox-
imity among objects has obvious applications. Consider, for instance, the problem of
collision detection in robot motion planning. The Euclidean distance is a commonly
used measure in these areas. Numerous efficient algorithms are known for comput-
ing the minimum distance between two polyhedra in two and three dimensions (see
[10, 12, 14]). Whenever two objects intersect, this distance measure is zero. Thus,
it fails to provide any information about the extent of penetration. The notion of
negative distance has been proposed by Buckley and Leifer [6] and Cameron and Cul-
ley [7] to rectify this discrepancy. We follow Keerthi and Sridharan [25] and define
the following measure of negative distance.

*Department of Computer Science, Princeton University, NJ 08544, U.S.A., and Bell Communi-
cations Research, Morristown, NJ 07960, U.S.A. The work of this author was partially supported
by National Science Foundation Grant CCR90-02352.

TDEC Systems Research Center, 130 Lytton Avenue, Palo Alto, CA 94301, U.S.A.

{Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1W5,
Canada. The work of this author was partially supported by grant A3583 from the Natural Sciences
and Engineering Research Council of Canada.

$Bell Communications Research, 445 South Street, Morristown, NJ 07960, U.S.A.

Given two intersecting polyhedra P and) and a direction d, let o4(P, @Q)) denote
the minimum distance by which) must be translated along d to make the interiors
of P and @ disjoint. We call o4(P, Q) the intersection-depth between P and () in
direction d. The minimum intersection-depth between P and), denoted o(P,Q), is
defined as the minimum of o4(P, Q) over all directions d. The definition of o(P, Q)
agrees with the measure proposed by Cameron and Culley [7].

The fixed-direction intersection-depth problem can be reduced to a separation
problem: move one of the polyhedra sufficiently far in direction d to ensure that
the two polyhedra are disjoint, and then find their directional separation. The
intersection-depth can be inferred by subtracting the separation from the initial dis-
placement. This gives an alternative way to consider and attack the problem; a safe
estimate of the initial displacement can often be made efficiently, for example, by
finding the extremal vertices of the two polytopes in directions +d.

The problem of computing the intersection-depth between two intersecting objects
is addressed by Cameron and Culley [7]; however, the complexity of their algorithm
is not analyzed. Keerthi and Sridharan [25] consider the problem for two convex
polygons. Given two intersecting convex polygons P and () of n and m vertices,
respectively, they propose an O(log nlog m) time algorithm for computing the direc-
tional intersection-depth, o4(P,@). For the minimum intersection-depth, o(P, @),
they achieve O(n +m) time. In this paper, we derive the following improvements and
extensions of these results.

Given two intersecting convex polygons P and @), where |P| = n and |Q| = m,
we can determine oq(P, ()) for any direction d in optimal time O(logn + logm). In
addition, after linear-time preprocessing, we can in O(log(n + m)) time compute the
minimum intersection-depth, o(P, @), for any placement of Q).

Next, we relax the convexity assumption on one of the polygons. If P is a sim-
ple nonconvex polygon and () is a convex polygon, we can build a data structure
in O(n logZ(n + m) 4+ m) time such that directional intersection-depth queries and
minimum intersection-depth queries can both be answered for any placement of ()
in time O((n + m)log(n + m)). The data structure can be extended to support di-
rectional intersection-depth queries in O(n?/3+%) time. The data structure requires
O(n + m) space. The query time can be reduced to O(y/nlog®n) by increasing the
preprocessing time and space.

We then consider the directional intersection-depth problem for two convex poly-
hedra in three dimensions. For suitably preprocessed polyhedra P and (), we can
determine og4(P, (Q)) in time O(log nlogm), for any direction d. The representation
assumed for the polyhedra is the hierarchical representation, originally proposed by
Dobkin and Kirkpatrick [11, 12, 13], which can be built in linear time.

The unifying idea in all our algorithms is implicitly searching the convolution of
two polytopes. It is well known that if two polytopes P and () intersect, then the
difference of their reference vectors lies in their convolution [21]. In fact, the problem

of computing the intersection-depth reduces to calculating the distance between the
boundary of a convolution and a point inside it. In all interesting cases, however, an
explicit construction of the convolution can be rather expensive; in two dimensions,
the convolution can have quadratic size if one of the polygons is nonconvex, and
in three dimensions, the size can be quadratic even for two convex polyhedra. We
develop methods for building and searching the convolutions implicitly, and apply
them to solve the intersection-depth problems in time sublinear in the size of the
convolution.

2 Minkowski Sum

Given two sets A and B of vectors, their Minkowski sum or convolution is the set
AdB={a+b|ac Aand be B}.

In all our applications, the ambient space is two or three-dimensional Euclidean
space, the sets are polyhedra, and the elements are points taken as vectors. We
will need to distinguish between various placements of the same shape (or solid) in
the space, and so each polyhedron is endowed with a reference point. Since only the
translates of a polyhedron are of interest, the placement of a polyhedron is completely
specified by the coordinates of its reference point. The polyhedron P translated by
a vector z is denoted P*. Symbols without the superscript denote the “default”
placement of the associated polyhedron, where the reference point is at the origin.
Finally, the polyhedron P reflected through the origin is denoted (—P):

(=P)={—a : a € P}.

The following lemma establishes a connection between the intersection and the
convolution.

Lemma 2.1 ([21]) Let P and Q be two polyhedra, and let x and y be vectors. Then
P*NQY#0if and only if y —x € P @ (—Q).

Let P and () be two intersecting polyhedra. Without loss of generality, assume
that the reference point of P coincides with the origin of our coordinate system, and
that the reference point of () is given by the vector gq. Their initial placements satisty
PNQ? # 0, which by the preceding lemma implies that ¢ € PH(—Q). A displacement
of () in direction d is given by Q?+*¢, for some ¢t > 0. Thus, the problem of computing
o4(P,Q7) is equivalent to finding the minimum t such that P N Q¢ = (). By
Lemma 2.1, this is equivalent to finding the minimum t such that

q+td Qf P@(—Q)- (1)

3

Since g + td is the parametric equation of a ray, whose origin is ¢ and direction is
d, the minimum ¢ for which (1) holds is determined by the (first) intersection of the
ray g + td with the boundary of P & (—@). Thus finding the intersection-depth in
a fixed direction reduces to the problem of intersecting a ray with a Minkowski-sum
polyhedron.

The problem of finding o(P,Q), the smallest translation in any direction that
would separate P and (), is equivalent to finding the minimum distance between ¢

and the boundary of P & (—Q):
o(P,Q") = min(t >0]|3d with |d|=1and ¢g+td¢ P& (-Q)). (2)

3 Convex Polygons

It is well known that the Minkowski sum of two convex polyhedra is a convex poly-
hedron [18]. In two dimensions, if P and @) are convex polygons of n and m vertices,
respectively, then P& () is a convex polygon of n+m vertices; an exception occurs if P
and () have parallel edges, in which case the convolved polygon has fewer than n+m
vertices. In the plane, P& () has a particularly simple characterization: its edges are
those of P and @), merged in slope order [20]. This fact allows one to compute P & @)
in linear time.

Theorem 3.1 ([20]) Given two convex polygons P and @), with n and m vertices,
respectively, we can compute their convolution P & @ in time O(n 4+ m).

The directional intersection-depth between P and () can be computed by implicitly
building that portion of P& (—(@)) that intersects the ray from ¢ in direction d. Guibas
and Stolfi [21] use a similar method to detect whether two given convex polygons
intersect. Observe that testing whether P intersects Q)¢ is equivalent to checking if
q € P& (—Q). Guibas and Stolfi achieve O(logn) time by determining the position
of those edges of the convolution that intersect the horizontal line through ¢. The
containment of ¢ in the convolution can be determined by testing against these edges.
The method of Guibas and Stolfi can be easily modified to determine, in O(log n) time,
the point of intersection between a ray originating from an interior point ¢ and the
convolution P & (—Q).

We can also perform a binary search directly in the object space, rather than
the convolution (i.e., the configuration space) to compute oq(P, @), using a method
similar to Chazelle and Dobkin’s method for detecting the intersection between two
convex polygons [9]. The procedure repeatedly selects the median edges on the two
polygonal chains and then, based on some local computations involving the median
edges, discards half of one of the chains. For further details, we refer the reader to [9].

Next, to solve the problem of finding the minimum intersection-depth over all
directions, we first compute the convolution P & (—@Q), in O(n) time; we assume

4

that each of the polygons has at most n vertices. The minimum depth is found by
determining the point closest to ¢ on the boundary of P& (—@Q). The latter task can
be accomplished easily in linear time by checking all the edges of the convolution.
Once P & (—Q) is computed, we can also answer the following query efficiently:
given Y, find the minimum translation needed in any direction to separate () from
P. To handle these queries, we compute the medial axis of the polygon P& (—@Q) and
build a point-location structure for it, using O(n) time altogether [2, 15, 26]. (The
medial azis of a polygon P is the locus of all points in P that are equidistant from
at least two points on the boundary of P. The medial axis of a convex polygon of
n vertices can be computed in O(n) time [2].) Given a query placement ¥, we can
find the closest point to y on the boundary of P & (—@Q) in O(logn) time by point
location in the medial-axis diagram. This establishes the following theorem.

Theorem 3.2 Let P and () be two convex polygons, with a total of n vertices. After
O(n) time preprocessing, given a placement QQ¥, we can compute o(P,QY) in time

O(log n).

In the following sections, we extend these ideas to solve similar problems for
non-convex polygons and three-dimensional convex polyhedra. The main difficulty
in these generalizations is that the Minkowski sum of non-convex polygons or 3D
polyhedra may have quadratic complexity, which makes their explicit construction
too costly. Instead, we develop methods for implicitly constructing and searching
these structures.

4 One Convex and One Nonconvex Polygon

Let P be a simple nonconvex polygon of n vertices and let () be a convex polygon
of m vertices. Given a placement of (), we want to compute the intersection-depth,
either in a fixed direction or the minimum over all directions. The Minkowski sum
of P and () is again a polygon; however, in contrast to the convex case, P & @) is
in general multiply connected, and may have (nm) vertices. Therefore, an explicit
construction of the convolution may be too expensive. Qur main result in this section
is a method for constructing and searching an implicit representation of P & (). The
representation can be constructed in O(n logQ(n + m) + m) time, stored in O(n + m)
space, and searched efficiently for the depth queries. At the top-level, our method
consists of the following steps.

Construct Convolution

Step 1. Triangulate P. Let 11,75,...,T be the triangles in this triangulation (s =
n—2).

Figure 1: A convolved triangle

Step 2. Compute an implicit representation of the convolutions R; = T; & (—@Q), for
1=1,2,...,s.

Step 3. Compute an implicit representation of the boundary of R = UR;.

4.1 Details of the Construction

We fix a Cartesian coordinate system in the plane and, without loss of generality,
assume that the origin lies in (); we take the origin as the reference point of ().

Step 1 is easily accomplished in O(nlogn) time, using any of the well-known
triangulation algorithms [17, 23]; in fact the time complexity can be reduced to O(n)
using a recent algorithm of Chazelle [8]. Pick a reference point r; for each of the
triangles 7;; for instance, we may pick the vertex closest to the origin.

Step 2 computes an implicit representation of the convolutions of these triangles
with the convex polygon (—@Q). The key to this step is the observation that the
convolution of two convex polygons has a particularly simple form, which in the case
of a triangle 7; and a convex polygon () can be determined implicitly in O(logm)
time. Recall that if A and B are two convex polygons, then the boundary of A & B
consists of edges of A and B merged in slope order [20]. To compute T; & (—Q),
therefore, we need only to locate the slopes of each of the three edges of T; among
the slopes of the edges of (—(@), which takes three binary searches and O(logm)
time. To represent R; = T; & (—@Q) implicitly, we just record the three places in the
array storing (—()) where the edges of T; are inserted. We call the convolution R; a
convolved triangle; see Figure 1 for an illustration.

Implicit Representation of the Convolved Triangles

In our description of the convolution so far we have concentrated on the “form”
and ignored the “placement” issue. A uniform way to resolve this discrepancy is to
convolve (—()) with a canonical copy of T}, placed at the origin, and then translate
the result by the vector r;. More precisely, let 7?7 = AQab be the canonical copy of

T;, where O is the origin and a and b are vectors denoting the remaining two vertices
of the triangle. Let ¢1,¢2,...,¢n be the ordered list of vertices of (—@)). Suppose
that the slope of Oa lies between the slopes of ¢;_1¢; and ¢;¢;4+1. Similarly, suppose ab
(resp. Ob) lies between ¢;_1¢; and ¢;q;4+1 (resp. ge—1qx and grgr+1). Then the ordered
list of vertices forming the boundary of 77 & (—@Q) is given by

9i-1,9i, (Qi‘|‘a)7 (qi+1+a)7 ceey (QJ—}—Q)J (QJ—I_b)J (QJ+1+b)7 ceey (qk+b)7qk7qk+17 s qi-1-

Finally, to obtain the convolution 7; & (—Q), we add the vector r; to each vertex
of T? & (—Q). It is clear that the indices i, j, k and vectors a,b and r; completely,
though implicitly, encode a representation of 7; & (—@)). This is precisely the implicit
representation of R; stored by our algorithm.

Next, we discuss the details of Step 3, in which we compute the boundary of the
union of these convolved triangles.

Union of Convolved Triangles

We want to compute R = UJ_; R;, where each of the R; is a convex polygon with m+3
vertices. An explicit description of R will require (nm) space in the worst case. We
therefore need to exploit the fact that each R; is (implicitly) representable as a six-
sided figure: three straight lines and three “arcs” of a convex polygon. This alone still
does not suffice since, in general, even the boundary of the union of s triangles can
have quadratic size. Fortunately, a result of Kedem et al. [24] shows that a collection
of convolved triangles is “well-behaved”; we use that result to construct a linear-space
implicit representation of the boundary of R. Our approach is similar in spirit to that
of Hershberger and Guibas [22]. We use the following two facts proved in Kedem et
al. [24].

Fact 4.1 ([24], p. 66) Let Ay and A; be two convex polygons with disjoint interiors,
and let B be another convex polygon. Then the boundaries of Ay & B and A; & B

intersect in at most two points.

Fact 4.2 ([24], p. 61) Let A;, 1 = 1,2,...,s, be a collection of convex polygons
with disjoint interiors, and let B be another convex set. Then the boundary of R =
Us_1(A; & B) has at most 6s — 12 points of local nonconvezity.

(Given a set S, a point p € S is called a point of local nonconvexity if each open
disk centered on p contains two points z,y € S such that the segments px,py € S
but the segment zy is not contained in S.)

A Sweep-line Algorithm

We use these facts to get an upper bound on the running time of a sweep-line algorithm
for computing the boundary of R. The algorithm we use is due to Ottman, Widmeyer
and Wood [28], which in turn is based on a technique of Bentley and Ottman [5]
for counting and reporting the intersections in a collection of planar line segments.
These algorithms run in O((n+1)log(n+1)) time, where n and ¢, respectively, are the
numbers of line segments and segment intersections. (Ottman, Widmeyer and Wood
extend the basic plane sweep algorithm of Bentley and Ottman to perform boolean
mask operations. Computing the boundary of the union of two sets of polygons,
each set free of self-intersections, is the boolean mask operation we use. Readers
unfamiliar with the paradigm of plane sweep are encouraged to refer to Preparata
and Shamos [29].)

In our case, the collection consists of straight-line segments as well as implicitly
represented arcs of a convex polygon. The algorithm of Ottman et al. works just as
efficiently in this setting too, with one minor modification. In addition to intersecting
two line segments, the algorithm must also be able to intersect two convex polygonal
arcs. Intersecting two arbitrary convex arcs can be difficult in general; however, there
are lucky breaks that we are able to exploit. First, by Fact 4.1, any two arcs intersect
in at most two points. Second, we intersect the arcs in the order the sweep line
encounters them. Thus, when our algorithm tries to compute the intersections of two
arcs, their leftmost points lie on the sweep line. Since each of the arcs is given as
an ordered list of vertices in an array, we can intersect them in time O(logm) by a
binary search. (The details of this search are quite straightforward and can easily be
worked out by the reader.) The worst-case running time of the sweep line algorithm
is still O((n +1t)log(n + 1)) since the overhead cost per intersection point is O(logn).
The following is a high-level description of our algorithm.

Algorithm to Compute R = UR,.

1. Divide the set of input convolved triangles into two halves: Ry, ..., R|s/) and

RL5/2J+17 ceey RS.

2. Recursively compute the union of the two halves, U = UZLi/lr‘)J R;, and V =
U= s/2) 41 L

3. Merge the two contours U and V using the (modified) Ottman-Widmeyer-Wood
algorithm.

Fact 4.2 implies that the total number of intersections ¢ is at most 6s — 12, which
is O(n), and hence the merge phase of our algorithm (step 3) takes O(nlog(n +m)).
The entire algorithm takes O(n logz(n +m) + m) time.

The boundary of R has a total of O(n) vertices, and each pair of adjacent vertices
is joined either by a straight line segment (corresponding to an edge of P) or an
implicitly described convex arc (corresponding to some portion of the boundary of
(—=Q)). We can store this boundary in O(n 4+ m) space.

4.2 Computing the Intersection-Depth using R

Having computed an implicit representation of R = UR,;, we now discuss how to use
it to solve the intersection-depth problem.

In the case of directional intersection-depth, we are given a placement of (), say
(7, and want to compute o4(P, Q?). Recalling the relation (1), this distance is equal
to the distance between ¢ and its closest point on the boundary of R in direction d.
Equivalently, we need to find the first intersection of R with the ray from ¢ in direction
d. We intersect the ray with each of O(n) bounding edges and arcs of R, and choose
the point closest to g. We can intersect the ray with a line segment in O(1) time,
and find its first intersection with a convex arc of m vertices in time O(log m). Thus,
the directional intersection-depth can be determined from an implicit representation
of R in O(nlogm) time.

If the minimum intersection-depth over all directions, namely o (P, Q?), is desired,
we need to do a little more work. We start by computing the minimum distance from
g to the explicitly stored boundary of R; that is, we ignore the convex arcs on the
boundary and find the minimum distance to the remaining edges and vertices of R.
If this distance is A, let D be the disk of radius A centered on ¢g. Let V(¢,A) C R be
the set of edges and vertices visible from ¢ whose distance from ¢ is no more than A;
alternatively, V(g, A) is the intersection of the visibility polygon of ¢ with the disk
D.

Lemma 4.3 V(q,A) has size O(n + m), and it can be computed from the implicit
representation of R in time O(nlog(n + m)+ m).

Proof: We give an algorithm that computes V (¢, A) in time O(nlog(n + m) + m)
using O(n + m) space, which proves the lemma. We start by computing an implicit
representation of the visibility polygon V of ¢ with respect to the boundary of R.
This takes O(nlog(n + m)) time and O(n + m) space using a variant of a standard
visibility polygon algorithm [3, 30], which we now describe. On each arc of) in the
implicit representation of R, there are at most two points such that the ray gz is
tangent to the arc. We find these points in O(nlog m) time altogether. If we cut the
boundary of R at these tangent points and at all the explicitly represented vertices,
we get a collection of O(n) explicit segments and implicit arcs, no two intersecting.
A ray from ¢ intersects a segment or an arc in the collection in at most one point.
We use an angular-sweep method to find the visibility polygon of ¢. We first find
the intersections of all arcs and segments with the vertical ray extending up from

g. The closest intersection to g belongs to V. Now we rotate the ray through 360°
while maintaining the segment or arc closest to ¢ as the minimum element of a
priority queue. Because the segments and arcs are disjoint, the closest segment or
arc changes only when the sweeping ray passes over an explicit vertex or a tangent
point. The result of the sweep is a partition of the directions around ¢ into O(n)
angular ranges such that within each range, exactly one segment or arc is visible
from g. The algorithm takes O(nlog(n + m)) time altogether for tangent-finding,
intersection-finding, and priority queue operations.

Once we have found V implicitly, we must refine it to get V(g,A). We compute
A in O(n) time. We wish to find any implicit arcs that cross D, but do not want
to examine all the O(nm) edges of V. Suppose that some implicit convex chain ¢ is
visible from ¢ in an angular range (o, 3). Because ¢ bulges away from ¢, any edge
of ¢ that intersects the interior of D must have its normal in the range (a, 3), that
is, must have the same slope as a tangent to D between « and . Thus to find any
portion of ¢ inside D, we find the extreme points of ¢ in directions a and 3, then
examine the edges between to see if any intersects D. This takes O(log m) time, plus
a cost proportional to the number of edges examined. There is no overlap between
the edges of () examined in any two angular ranges, and so computing V(gq, A) takes

O(nlog(n +m) + m) time and O(n + m) space. |

Once V(¢,A) is known, the minimum distance between ¢ and V (¢, A) can be
computed in O(n 4+ m) time. By equation (2), this distance equals the minimum
intersection-depth o (P, Q?). We summarize the results of this section:

Theorem 4.4 Let P be a stimple nonconvex polygon and () a convex polygon, where
|P| = n and |Q| = m. In O(nlog*(n + m) + m) time, we can build a linear-space
data structure that can answer the following queries: (1) given a placement Q7 and
a direction d, determine the directional intersection-depth oq4(P,Q?), and (2) given a
placement Q?, determine the minimum intersection-depth o(P,Q?). The query times
are O(nlogm) and O(nlog(n + m) + m), respectively.

Remark. Theorem 4.4 also holds for a polygon P with holes. The construction is
exactly the same: we triangulate P, compute convolved triangles, and then find the
boundary of their union. Since we only require that the triangles in the triangulation
of P have pairwise disjoint interiors, the time and space bounds are the same whether
the polygon has holes or not.

4.3 Query Answering in Sublinear Time

In this section, we show how to preprocess R so that fixed-direction intersection-depth
queries can be answered in sublinear time, for an arbitrary placement of (). Finding
o4(P,Q?) is a ray-shooting problem: we want to find the first point where the ray

10

g+td hits the boundary of R. After some preprocessing, we can apply the ray-shooting
techniques of Guibas, Overmars and Sharir [19] and Agarwal [1]. The preprocessing
takes O(nlogn 4+ m) time and O(n + m) space; queries take O(n?*+® 4 logm) time,
for 6 > 0 and arbitrarily small.

For any implicit arc ¢, we know that the segment connecting the arc endpoints
lies inside R (it lies inside the placement of () that produced ¢). Furthermore, the
segments for any two distinct arcs are disjoint. Each arc and its associated segment
form an “ear” of the region R (see Figure 2). These ears play a critical role in ray-
shooting: any ray that enters an ear by crossing its segment will intersect the ear’s
arc before hitting any other boundary point of K. The point of intersection can be
found in O(logm) time.

Figure 2: Ears produced by convolving a polygon with a disk

To prepare R for ray-shooting, we cut off all its ears. This leaves a polygonal region
bounded by O(n) line segments. We preprocess this region for ray-shooting [1, 19],
which takes O(nlogn) time and O(n) space. We also preprocess the ears for point
location; the preprocessing takes O(nlog(n + m)), after which a point location query
can be answered in O(log(n + m)) time [15].

At query time, we try to locate ¢ in the ears. If ¢ lies in an ear, we check whether
g + td hits the arc or the segment of the ear. If it hits the arc, we are done. If it hits
the segment, we proceed as if g lay outside the ear at the intersection of the ray and
the ear’s segment. In this case, or if ¢ lies outside all ears, we find the first explicit
segment or ear segment that the ray hits, which takes O(n?/3+%) time. If the ray hits
an ear segment, we find the intersection of the ray with the ear’s arc in O(logm)
additional time. If we are willing to spend O(n*/?log® n) time for preprocessing and
O(nlog®n) storage space, then the query time can be reduced to O(y/nlog®n) [1].
This solves the directional intersection-depth problem.

11

Theorem 4.5 Let P be a simple polygon and let () be a convex polygon with a total
of n vertices. In O(nlog®n) time we can build an O(n) space data structure that can
compute o4(P,Q?), for an arbitrary direction d and an arbitrary placement of @), in
time O(n*>%%), where § is an arbitrarily small but positive constant. The query time
can be reduced to O(y/nlog®n) at the expense of O(n®/*log® n) preprocessing time and
O(nlog®n) space.

5 Convex Polyhedra in Three Dimensions

5.1 Representation of Polytopes

Let P and () be two convex polyhedra with a total of n vertices. We show that
if P and () are suitably preprocessed, then their directional intersection-depth can
be determined in O(log®n) time. The representation of each polyhedron consists of
an inner polyhedral hierarchy and an outer polyhedral hierarchy. These hierarchical
representations were introduced by Dobkin and Kirkpatrick [11, 12, 13], who used
them for determining the separation of two convex polyhedra. To describe these data
structures, consider a polytope P with vertex set V(P).! A sequence of polytopes
P, P, ..., P is called an inner polyhedral hierarchy of P if, for 1 <1 < k,

(i) A =P, and Py is a simplex,
(11) Py CPF and V(PZ'_H) C V(PZ),
(ii1) V(P) \ V(Piy1) forms an independent set in F;.

Thus, an inner hierarchy is a sequence of increasingly smaller polyhedral approx-
imations of P, where each approximation is contained in its predecessor.

The outer polyhedral hierarchy is similar, except at each iteration we remove an
independent set of faces. In particular, let H(P) be the set of planes bounding the
faces of P. Then the outer hierarchy of P is a sequence of polytopes Py, Ps, ..., P
such that

(i) A =P, and Py is a simplex,
(11) Py DF and H(PZ'_H) C H(PZ),
(iii) H(P;) \ H(Pi41) bounds an independent set of faces in P;.

The degree of an inner polyhedral hierarchy is the maximum degree, over all 7, of a
vertex in V(FP;)\ V(Pi41). The degree of an outer polyhedral hierarchy is analogously

!'We limit our discussion to bounded polytopes, although all our results hold for unbounded
polyhedra as well, at the expense of some minor technical complications.

12

defined, with faces in place of vertices. The following fact is based on the property
that the facial graph of a convex polytope is a planar graph, and planar graphs admit
a large independent set of small degree.

Fact 5.1 ([12]) There is an inner (resp. outer) polyhedral hierarchy of P with height
O(log |P|), size O(|P|), and degree O(1). Furthermore, given a standard representa-
tion of the facial graph of P (cyclic orderings of edges around the vertices and the
faces), one can construct these hierarchies in linear time.

In our discussion, we assume that each polyhedron is represented by its twin
polyhedral hierarchies satistfying properties stated in Fact 5.1. In particular, a convex
polytope P is represented by its inner polyhedral hierarchy Py, P, ..., P, where each
P; is represented by an outer polyhedral hierarchy. We endow each hierarchy with
some additional data to facilitate searching, as follows.

1. In an inner hierarchy, for each face F' of P,y that is not a face of P;, we store
a pointer to the unique vertex v of F; whose removal created F'.

2. In an outer hierarchy, for each vertex v of P4y that is not a vertex of P;, we
store a pointer to the unique face F' of P; whose removal created v.

Using the hierarchical representation of a polytope, we can answer various ex-
tremal queries involving points, lines or planes in logarithmic time. These queries are
later used by our intersection-depth algorithm. The reader may refer to the papers

of Dobkin and Kirkpatrick [11, 13] or the book by Mehlhorn [27] for proofs of the

following lemmas.

Lemma 5.2 Given a directed line [, we can find its first intersection with P;, for any
1 <i¢ <k, in O(logn) time.

Lemma 5.3 Suppose [is a line translating from infinity in direction d. We can find
the first point of contact between | and P;, for any 1 <1 <k, in O(logn) time.

Lemma 5.4 Suppose H is a plane translating from infinity in direction d. We can
find the first point of contact between H and P;, for any 1 < <k, in time O(logn).

5.2 Computing the Intersection-Depth

We begin with the observation that if A is a convex polytope of constant complexity,
then the intersection-depth o4(A, P) can be computed in time O(logn). This follows
because the intersection-depth oy(x, P) for each element (vertex, edge or face) x € A
can be computed in time O(log n) using Lemmas 5.2, 5.3, and 5.4. We therefore have
the following corollary of the results of the previous subsection.

13

Corollary 5.5 Let A be a convex polytope of bounded complexity and let P be a
convex polytope of n vertices, given by its twin hierarchical representation. Then for
any direction d, we can compute the depth of collision o4(A, P) in time O(logn).

We now describe our algorithm for computing the fixed-direction intersection-
depth between P and (). For ease of description, let us assume that the inner hierar-

chies of both P and () have k levels, with & > 1.
Algorithm Compute-Depth-3D

Initialization. Compute the intersection between the simplices Py, and Q. If P, N
Qr = 0, find a separating plane H; and go to Phase 1.

Otherwise (i.e., P, N Qx #), compute oq4(P, Qr); translate Qx by c4(Pr, Qr)
along direction d so that P, and ()i are in contact; find a plane Hj that passes
through the common tangency of P, and ()} and separates their interiors; and
go to Phase 2.

Phase 1. (This phase maintains the invariant that the polytopes P; and Q); are non-
intersecting and we know a witness plane H; such that P; C HY and Q; C H; .)

(1A) Compute the polytopes P;_; = Pr_y N H and Q;_, = Q;_y N H.

(1B) Determine whether the following intersections are nonempty: Pi_y NQ:_,
and P,_, NQ,_y. If both intersections are empty, go to Step 1C; otherwise
go to Step 1D.

(1C) Find a plane H;_; such that P,y C HY, and Q;_; C HZ,. If i > 2,
decrement ¢ by 1 and go to Step 1A; otherwise, output “o4(P, Q) = 0”7 and
stop.

(1D) Compute o4(Fi-1,Qi-1) = max {Ud(PZ'/_p Qi-1), oa(Pi-1, Q;_O}-
Translate Q;_; by 04(Pi_1,Q;_1). Find a plane H; ; such that P,_, C H},
and Q);—1 C H_,. If t > 2, decrement 2 by 1 and go to Phase 2; otherwise,
output o4(P1, Q1) and stop.

Phase 2. (This phase maintains the invariant that the polytopes P; and Q); are tan-
gent to each other and we know a plane H; such that P, C HY and Q; C H;.)

(2A) Compute the polytopes P._; = Py N H and Q;_, = Q;_y N H}.
(2B) Compute Acy(F;—1,Qi—1) = max {Ud(Pz‘I—laQi—l)a Ud(Pi—laQ;—l)}'

14

(2C) Translate Q;—1 by Acy(Pi—1,Qi-1). Update

0q(Pim1, Qi—1) = 0a(Py, Qi) + Acg(Pi1, Qi—1).

Find a plane H;_; satisfying P,_y C HY, and Q;,_; C H_,.
If 7 > 2, decrement ¢ by 1 and go to Step 2A; otherwise, output o4(P, Q1)
and stop.

Theorem 5.6 Let P and () be two convex polyhedra, with n and m vertices, respec-
tively, each given by its hierarchical representation. For any direction d, the algo-
rithm described above computes the directional intersection-depth o4(P, Q) in time

O(log nlogm).

Proof: We first establish the correctness of the algorithm. The algorithm ensures
that ¢ > 2 each time step 1A or step 2A is executed, so P;_; and ();_; are well defined.
Phase 1 finishes when P; N Q; # 0, for some 7, 1 < i < k. One easily verifies that if
P,NnQ; =0, then P,_y NQ;_y # I if and only if one of the two pairs of polytopes in
Step 1B is found to intersect. If neither of the pairs intersects, then one can also find
a plane H,_; that separates P,_; from);,_1. (There are several ways to find such a
separating plane. One possibility is to use the perpendicular bisector of the closest
pair of P;_1 and);_1.) This proves the correctness of Phase 1.

In Phase 2, we maintain the invariant that P; and (); are in contact, and a plane H;
separating their interiors is known. Suppose that we enter an iteration of this phase
with P; and Q;. Tt is easy to see that only the polytopes P,_, and Q;_, are of inter-
est for determining whether P;,_; and ();_; intersect. Furthermore, Aoy(Pi—1,Qi-1)
correctly reflects the amount by which ¢;_; must be translated to make its interior
disjoint from P;_;. We find a plane H;_;, which can be determined easily using the
contact point of the two polytopes, and start the next iteration. The invariant is
maintained and correctness of Phase 2 has been established.

Finally, we show that each iteration of Phase 1 or Phase 2 can be completed in
O(log n) time. The basic step of computing the polytopes P/_, and Q;_, in Steps 1A
and 2A takes O(logn) time, as follows. By the convexity of P,_;, at most one of its
vertices lies in H~. If there is a vertex v € V(F,_1) lying in H~, then v also forms the
first point of contact between P;_; and a plane moving parallel to H; from infinity. By
Lemma 5.4, we can find v, and thus P,_,, in time O(logn). The remaining steps take
O(log n) time by Corollary 5.5, since both P/_, and Q;_, have bounded complexity.
(The logarithmic time bound per step also suffices for maintaining the closest pair
(and hence the separating plane in Phase 1) of P; and);.) This completes the proof
of the theorem. |

15

6 Extensions, Related Problems and Conclusions

The intersection-depth is a reasonable measure of negative distance between intersect-
ing objects. In many realistic situations, however, some additional factors might come
into play. Practical constraints might require that all translations be along a fixed set
of directions. This restriction simplifies the query version of the intersection-depth
problem. Given a non-convex polygon P and a convex polygon @), for each direction
d, we perform an (implicit) trapezoidal decomposition of the convolution-space R,
and preprocess the resulting subdivision for point location. Given a placement of ()7
and direction d, we locate ¢ in the subdivision of R corresponding to d and compute
o4(P,QY) by intersecting the ray ¢ + td with the sides of the trapezoid containing g¢.
The procedure takes O(logn) time.

In many robotic situations, one may prefer a complete separation of the two poly-
gons. Given two intersecting polygons P and () and a direction d, translating () by
o4(P, Q) ensures that P and @) no longer intersect; however, () may still be stuck
in one of the “pockets” of P and hence cannot be moved arbitrarily far. By the
complete separation of P and () in direction d we mean the smallest translation that
moves () to a position from where it can be translated arbitrarily far along d without
intersecting P. In terms of the convolution it requires finding a point in the infinite
face of the complement of P & (—@). This problem also appears to be easier than
computing o4 and o. We maintain an implicit representation of only the outermost
boundary of R = P& (—(Q). After linear-time preprocessing, the complete separation
in a fixed direction can be computed in O(logn) time by performing a ray-shooting
query in a simple polygon.

If P and) are both non-convex, then we can find their complete separation
in a given direction in linear time. We first translate) sufficiently far along the
given direction to ensure that it is disjoint from P; this can be accomplished by
determining the extreme vertices of P and () in the given direction. Next we compute
the “horizontal” visibility profile of () with respect to P and vice versa (by choosing
the fixed direction to be the horizontal direction); the horizontal visibility profile
computes for each vertex ¢ € () the edge of P that is hit by the horizontal ray issuing
from ¢q. The horizontal separation can be inferred from the visibility profile, and by
subtracting it from the initial displacement we arrive at the complete separation. The
procedure runs in linear time since we can compute the horizontal visibility profile in
O(n) time using a standard visibility-polygon algorithm [16]. (The key observation
here is that since P and () are separated by a vertical line, it suffices to consider the
horizontal visibility profile of only the left and right envelopes of P and (); the vertices
not on the envelopes don’t matter. To compute the visibility profile, we merge the two
envelopes, which takes linear time. Computing the envelopes also takes linear time,
since an envelope of a polygon is the same as its (external) visibility polygon from
the point z = 00.) In contrast, we know of no o(n?) time algorithm for determining

16

the fixed-direction intersection-depth of two non-convex polygons.

Finally, the minimum intersection-depth between two three-dimensional convex
polyhedra P and Q7 can be computed in O(n*) time by computing their convolution
explicitly and then finding the boundary point closest to g.

Our work suggests several open problems. Can the fixed-direction intersection-
depth of two non-convex polygons be computed in substantially better than O(n?)
time? How fast can the minimum intersection-depth be computed for two nonconvex
polygons? An O(n*) time bound can be obtained by explicitly computing the con-
volution of the two polygons. (The convolution of two n-vertex polygons can have
Q(n?) size in the worst case [4], and so a sub-quartic algorithm must avoid build-
ing the entire convolution.) Can some nontrivial lower bounds be proved for these
problems?

For two convex polyhedra P and () in three dimensions, we gave an O(log®n)
time procedure for determining the directional depth of intersection. Can the time
bound be improved to O(logn)? We can compute the minimum intersection-depth
of two convex polyhedra by computing their convolution explicitly in O(r?) time. Is
it possible to do substantially better? Extensions involving nonconvex polyhedra are
also worth investigating.

References

[1] P. Agarwal. Ray shooting and other applications of spanning trees with low
stabbing number. Proc. of 5th ACM Symposium on Computational Geometry,
315-325, 1989.

[2] A. Aggarwal, L. Guibas, J. Saxe, and P. Shor. A linear time algorithm for com-
puting the Voronoi diagram of a convex polygon. Discrete and Computational

Geometry, 4:591-604, 1989.

[3] T. Asano. An efficient algorithm for finding the visibility polygons for a polygonal
region with holes. Transactions of IECE of Japan, E-68:557-559, 1985.

[4] B. S. Baker, S. F. Fortune and S. R. Mahaney. Polygon containment under
translation. Journal of Algorithms, 532-548, 1986.

[5] J. Bentley and T. A. Ottman. Algorithms for reporting and counting geometric
intersections, IEEE Transactions on Computers, C-28:643-647, 1979.

[6] C. E. Buckley and L. J. Leifer. A proximity metric for continuum path planning.
Proc. 9th International Joint Conference on Artificial Intelligence, 1096-1102,
1985.

17

7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

S. A. Cameron and R. K. Culley. Determining the minimum translation distance
between two convex polyhedra. Proc. IEEE International Conference on Robotics

and Automation, 591-596, 1986.

B. Chazelle. Efficient polygon triangulation. Proc. of IEEE Symp. on Founda-
tions of Computer Science, 220-230, 1990.

B. Chazelle and D. Dobkin. Intersection of convex objects in two and three

dimensions. J. of ACM, 34:1-27, 1987.

F. Chin and C. A. Wang. Optimal algorithms for the intersection and the mini-
mum distance problems between planar polygons. IEEFE Transactions on Com-

puters, C-32:1203-1207, 1983.

D. Dobkin and D. Kirkpatrick. Fast detection of polyhedral intersections. Proc.
of ICALP ’82, 154-165, 1982. Lecture Notes in Computer Science 140.

D. Dobkin and D. Kirkpatrick. A linear algorithm for determining the separation
of convex polyhedra. J. of Algorithms, 6:381-392, 1985.

D. Dobkin and D. Kirkpatrick. Determining the separation of preprocessed
polyhedra—a unified approach. Proc. of ICALP 90, 400-413, 1990. Lecture

Notes in Computer Science 443.

H. Edelsbrunner. Computing the extreme distances between two convex poly-

gons. J. of Algorithms, 6:213-224, 1985.

H. Edelsbrunner, L. Guibas, and J. Stolfi. Optimal point location in a monotone

subdivision. SIAM Journal on Computing, 15:317-340, 1986.

H. El Gindy and D. Avis. A linear algorithm for computing the visibility polygon
from a point. J. of Algorithms, 2:186-197, 1981.

M. Garey, D. S. Johnson, F. P. Preparata and R. E. Tarjan. Triangulating a
simple polygon. Information Processing Letters, 7:175-179, 1978.

B. Griunbaum. Convex Polytopes. John Wiley and Sons, Ltd. 1967.

L. Guibas, M. Overmars, and M. Sharir. Intersecting line segments, ray shoot-
ing, and other applications of geometric partitioning techniques. In Proc. of
the First Scandinavian Workshop on Algorithm Theory, pages 64-73. Springer-
Verlag, 1988. Lecture Notes in Computer Science 318.

L. Guibas, L. Ramshaw and J. Stolfi. A kinetic framework for computational
geometry. Proc. 24th Foundations of Computer Science, 100-111, Nov. 1983.

18

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

L. J. Guibas and J. Stolfi. Ruler, compass, and computer: The design and
analysis of geometric algorithms. Research Report 37, DEC Systems Research

Center, 1989. Also appeared in Theoretical Foundations of Computer Graphics
and CAD, Springer-Verlag.

J. Hershberger and L. Guibas. An O(n?) shortest path algorithm for a non-
rotating convex body. Journal of Algorithms, 9:18-46, 1988.

S. Hertel and K. Mehlhorn. Fast triangulation of simple polygons. Lecture Notes
in Computer Science, 158, 207-218, 1983.

K. Kedem, R. Livne, J. Pach and M. Sharir. On the union of Jordan regions
and collision-free translational motion amidst polygonal obstacles. Discrete and
Computational Geometry, 1:59-71, 1986.

S. S. Keerthi and K. Sridharan. Efficient algorithms for computing two measures
of depth of collision between convex polygons. Technical Report, Department of
Computer Science and Automation, 11S, Banglore, India, 1989.

D. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on Com-
puting, 12:28-35, 1983.

K. Mehlhorn. Multi-dimensional Searching and Computational Geometry,
EATCS Monographs on Theoretical Computer Science, Springer-Verlag, 1984.

T. A. Ottman, P. Widmeyer and D. Wood. A fast algorithm for Boolean mask op-
erations. Inst. f. Angewandte Mathematik und Formale Beschreibungsverfahren,

D-7500 Karlsruhe, Report no. 112, 1982.

F. P. Preparata and M. 1. Shamos. Computational Geometry: An Introduction.
Springer-Verlag, 1985.

S. Suri and J. O’Rourke. Worst-case optimal algorithms for constructing visibility
polygons with holes. Proc. of 2nd ACM Symposium on Computational Geometry,
14-23, 1986.

19

