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Abstract

Measuringthesimilarity between3D shapesis afundamentalprob-
lem,with applicationsin computervision,molecularbiology, com-
putergraphics,anda variety of otherfields. A challengingaspect
of thisproblemis to find asuitableshapesignaturethatcanbecon-
structedandcomparedquickly, while still discriminatingbetween
similaranddissimilarshapes.

In this paper, we proposeandanalyzea methodfor computing
shapesignaturesfor arbitrary(possiblydegenerate)3D polygonal
models.Thekey ideais to representthesignatureof anobjectasa
shapedistributionsampledfrom ashapefunctionmeasuringglobal
geometricpropertiesof anobject. Theprimarymotivation for this
approachis to reducethe shapematchingproblemto the compar-
ison of probability distributions,which is a simplerproblemthan
thecomparisonof 3D surfacesby traditionalshapematchingmeth-
odsthatrequireposeregistration,featurecorrespondence,or model
fitting.

We find that the dissimilaritiesbetweensampleddistributions
of simpleshapefunctions(e.g.,the distancebetweentwo random
pointson asurface)providea robustmethodfor discriminatingbe-
tweenclassesof objects(e.g.,carsversusairplanes)in amoderately
sizeddatabase,despitethepresenceof arbitrarytranslations,rota-
tions,scales,mirrors, tessellations,simplifications,andmodelde-
generacies.They canbeevaluatedquickly, andthustheproposed
methodcouldbeappliedasapre-classifierin anobjectrecognition
systemor in aninteractivecontent-basedretrieval application.

1 Introduction

Determiningthesimilaritybetween3Dshapesisafundamentaltask
in shape-basedrecognition,retrieval, clustering,andclassification.
Its main applicationshave traditionally beenin computervision,
mechanicalengineering,andmolecularbiology. However, dueto
three recentdevelopments,we believe that 3D model databases
will becomeubiquitous,and the applicationsof 3D shapeanaly-
sis and matchingwill expandinto a wide variety of otherfields.
First, improved modelingtools andscanningdevices are making
acquisitionof 3D modelseasierandlessexpensive,creatinga large
supplyof publically available3D datasets(e.g., the ProteinData
Bank [30]). Second,the World Wide Web is enablingaccessto
3D modelsconstructedby peopleall over the world, providing a
mechanismfor wide-spreaddistributionof highquality3D models
(e.g.,avalon.viewpoint.com). Finally, 3D graphicshardware and
CPUshavebecomefastenoughandcheapenoughthat3D datacan
beprocessedanddisplayedquickly on desktopcomputers,leading
to ahighdemandfor 3D modelsfrom awiderangeof sources.

Unfortunately, sincemost3D file formats(VRML, 3D Studio,
etc.) have beendesignedfor visualization,they containonly ge-
ometric and appearanceattributes,and usually lack semanticin-
formationthatwould facilitateautomaticmatching.Althoughit is
possibleto includemeaningfulstructureandsemantictagsin some
3D file formats(the “layer” field associatedwith entitiesin Auto-

Cadmodelsis a simpleexample),thevastmajority of 3D objects
availablevia the World Wide Web will not have them,and there
arefew standardsregardingtheir use. In general,3D modelswill
be acquiredwith scanningdevices,or outputfrom geometricma-
nipulation tools (file format conversionprograms),and thus they
will haveonly geometricandappearanceinformation,usuallycom-
pletelyvoid of structureor semanticinformation.Automaticshape-
basedmatchingalgorithmswill beusefulfor recognition,retrieval,
clustering,andclassificationof 3D modelsin suchdatabases.

Databasesof 3Dmodelshaveseveralnew andinterestingcharac-
teristicsthatsignificantlyaffect shape-basedmatchingalgorithms.
Unlike imagesandrangescans,3D modelsdo not dependon the
configurationof cameras,light sources,or surroundingobjects
(e.g.,mirrors).As aresult,they donotcontainreflections,shadows,
occlusions,projections,or partialobjects,which greatlysimplifies
finding matchesbetweenobjectsof thesametype. For example,it
is plausibleto expectthatthe3D modelof ahorsecontainsexactly
four legs of roughly equalsize. In contrast,any 2D imageof the
samehorsemay containfewer thanfour legs (if someof the legs
areoccludedby tall grass),or it maycontain“extra legs” appearing
astheresultof shadows on thebarnand/orreflectionsin a nearby
pond,or someof the legs may appearsmallerthanothersdueto
projective distortions. Theseproblemsare vexing for traditional
computervision applications,but generallyabsentfrom 3D model
matching.

In otherrespects,representingandprocessing3Dmodelsismore
complicatedthanfor sampledmultimediadata.Themaindifficulty
is that 3D surfacesrarely have simple parameterizations.Since
3D surfacescan have arbitrary topologies,many useful methods
for analyzingother media (e.g., Fourier analysis)have no obvi-
ous analogsfor 3D surfacemodels. Moreover, the dimensional-
ity is higher, which makes searchesfor poseregistration,feature
correspondences,and modelparametersmoredifficult, while the
likelihoodof modeldegeneraciesis higher. In particular, most3D
modelsin largedatabases,suchastheWorld WideWeb,arerepre-
sentedonly by “polygonsoups”– unorganizedanddegeneratesets
of polygons. They seldomhave any topology or solid modeling
information;they rarelyaremanifold; andmostarenot even self-
consistent.We conjecturethatalmostevery3D computergraphics
modelavailable today containsmissing, wrongly-oriented,inter-
secting, disjoint,and/oroverlappingpolygons. As a few examples,
the classicUtah teapotis missingits bottom, and the ubiquitous
StanfordBunny [38] hasseveralholesalongits base.Theproblem
with thesedegeneraterepresentationsis thatmostinterestinggeo-
metric featuresandshapesignaturesaredifficult to compute,and
many othersare ill-defined (e.g., what is the volume of a teapot
with no bottom?).Meanwhile,fixing thedegeneraciesin such3D
modelsto form a consistentsolid region andmanifoldsurfaceis a
difficult problem[11, 28, 42], often requiringhumanintervention
to resolveambiguities.

In this paper, we describeandanalyzea methodfor computing
3Dshapesignaturesanddissimilaritymeasuresfor arbitraryobjects
describedby possiblydegenerate3D polygonalmodels. The key
ideais to representthesignatureof anobjectasashapedistribution



sampledfrom ashapefunctionmeasuringglobalgeometricproper-
tiesof theobject.Theprimarymotivationfor this approachis that
the shapematchingproblemis reducedto the comparisonof two
probabilitydistributions,whichis arelatively simpleproblemwhen
comparedto themoredifficult problemsencounteredby traditional
shapematchingmethods,suchasposeregistration,parameteriza-
tion, featurecorrespondence,andmodelfitting. Thechallengesof
this approachare to selectdiscriminatingshapefunctions,to de-
velopefficientmethodsfor samplingthem,andto computethedis-
similarity of probabilitydistributionsrobustly. This paperpresents
our initial stepsto addresstheseissues.For eachissue,wedescribe
severaloptionsandpresentexperimentalevaluationof their relative
performance.Overall,wefind thattheproposedmethodis notonly
fastandsimpleto implement,but it alsoprovidesusefuldiscrim-
ination of 3D shapesand thus is suitableas a pre-classifierfor a
recognitionor similarity retrieval system.

The remainderof the paperis organizedas follows. The next
sectioncontainsa summaryof relatedwork. An overview of the
proposedapproachappearsin Section3,whiledetaileddescriptions
of issuesandproposedsolutionsfor implementingourapproachap-
pearin Section4. Section5 presentsresultsof experimentsaimed
at evaluatingthe robustnessanddiscriminationof shapedistribu-
tions. Finally, Section6 containsa summaryof our experiences
andproposestopicsfor futurework.

2 Related Work

Theproblemof determiningthesimilarity of two shapeshasbeen
well-studiedin several fields. For a broadintroductionto shape
matchingmethods,pleaserefer to any of severalsurvey papers[2,
7, 13, 41, 44, 56]. To briefly review, prior matchingmethodscanbe
classifiedaccordingto their representationsof shape:2D contours,
3D surfaces,3D volumes,structuralmodels,or statistics.

The vast majority of work in shapematchinghas focusedon
characterizingsimilarity betweenobjectsin 2D images(e.g.,[18,
26, 34, 43]). Unfortunately, most 2D methodsdo not extenddi-
rectly to 3D modelmatching. The main problemis boundarypa-
rameterization.Althoughthe1D boundarycontoursof 2D shapes
haveanaturalarclengthparameterization,3D surfacesof arbitrary
genusdo not. As a result,commonrepresentationsof 2D contours
for shapematching,suchasFourierdescriptors[5], turning func-
tions[6], circularautoregressivemodels[36], bendingenergy func-
tions[59], archheightfunctions[40], andsizefunctions[55], have
noanalogsfor 3D models.

Shapematchinghasalsobeenwell-studiedfor 3D objects.For
instance,representationsfor registeringandmatching3D surfaces
include ExtendedGaussianImages[31], SphericalAttribute Im-
ages[20, 21], HarmonicShapeImages[60], andSpinImages[35].
Unfortunately, thesepreviousmethodsusuallyassumethata topo-
logically valid surfacemeshor an explicit volumeis availablefor
every object. In addition,volumetricdissimilaritymeasuresbased
wavelets[27] or EarthMover’s Distance[48] usuallyrely upona
priori registrationof objects’coordinatesystems,which is difficult
to achieve automaticallyandrobustly. Geometrichashing[39] is
a potentialsolution,but it requiresa large amountof storagefor
complex models.

Another popular approachto shapeanalysisand matchingis
basedon comparinghigh-level representationsof shape. For in-
stance,model-basedapproachesfirst decomposea 3D object into
a setof features(or parts),andthencomputea dissimilarity mea-
surebetweenobjectsbasedon the differencesbetweentheir fea-
turesand/ortheir spatialrelationships.Examplerepresentationsof
this type include generalizedcylinders [16], superquadrics[52],
geons[58], deformableregions [12], shockgraphs[50], medial

axes[10], andskeletons[17, 23]. Thesemethodswork bestwhen
3D modelscanbesegmentedinto a canonicalsetof featuresnatu-
rally andcorrespondencescanbefoundbetweenfeaturesrobustly.
Unfortunately, thesetasksaredifficult andnot alwayswell-defined
for arbitrary3Dpolygonalmodels(e.g.,whatis thecanonicalskele-
ton for anunconnectedsetof polygons?).Moreover, featuredetec-
tion andsegmentationalgorithmstendto besensitive to smallper-
turbationsto the model,placingundueburdenon subsequentfea-
ture correspondenceanddissimilarity computationsteps.Finally,
the combinatorialcomplexity of finding correspondencesin large
discretemodelsusually leadsto long computationtimes and/or
largestoragerequirements.

Finally, shapeshave beencomparedon thebasisof their statis-
tical properties.The simplestapproachof this type is to evaluate
distancesbetweenfeaturevectors[22] in amultidimensionalspace
wherethe axesencodeglobalgeometricproperties,suchascircu-
larity, eccentricity, or algebraicmoments[45, 53]. Othermethods
have compareddiscretehistogramsof geometricstatistics.For ex-
ample,Thackeretal [1, 4, 8, 9, 24, 25, 47, 54], Huetetal. [32], and
Ikeuchietal. [33] haveall representedshapesin 2D imagesby his-
togramsof anglesanddistancesbetweenpairsof 2D line segments.
For 3D shapes,Ankerstetal. [3] hasusedshapehistogramsdecom-
posingshellsandsectorsarounda model’s centroid.Besl [14] has
consideredhistogramsof thecreaseanglefor all edgesin a 3D tri-
angularmesh.Besl’s methodis the mostsimilar to our approach.
However, it worksonly for manifoldmeshes,it is sensitiveto cracks
in the modelsandsmall perturbationsto thevertices,andit is not
invariant underchangesto meshtessellation.Moreover, the his-
togramof creaseanglesdoesnot alwaysmatchour intuitivenotion
of rigid shape.For example,addingany extraarmto ahumanbody
resultsin the samechangeto a creaseanglehistogram,no matter
whetherthe new arm extendsfrom the body’s shoulderor the top
of its head.

To our knowledge,thereis no existing methodthatcanrapidly
androbustly matchlarge 3D polygonalmodelswith arbitraryde-
generacies.Previous approacheshave difficulty with 3D polygon
soupsbecausethey invariably requirea solutionto at leastoneof
the following difficult problems:reconstruction,parameterization,
registration,or correspondence.The motivation behindour work
is to develop a fast, simple, and robust methodfor matching3D
polygonalmodelswithoutsolvingtheseproblems.

3 Overview of Approach

Our approachis to representtheshapesignaturefor a 3D modelas
aprobabilitydistributionsampledfrom ashapefunctionmeasuring
geometricpropertiesof the3Dmodel.Wecall thisgeneralizationof
geometrichistogramsa shapedistribution. For example,onesuch
shapedistribution,whichwe call D2, representsthedistributionof
Euclideandistancesbetweenpairsof randomlyselectedpointson
the surfaceof a 3D model. Samplesfrom this distribution canbe
computedquickly andeasilyfrom any 3D surfacemodel,while our
hypothesisis thatthedistributiondescribestheoverall shapeof the
representedobject.Oncewehavecomputedtheshapedistributions
for two objects,thedissimilaritybetweentheobjectscanbeevalu-
atedusingany metricthatmeasuresdistancebetweendistributions
(e.g.,

���
norm),possiblywith a normalizationstepfor matching

scales.
Thekey ideais to transformanarbitrary3D modelinto aparam-

eterizedfunction that canbe comparedwith otherseasily. In our
case,thedomainof theshapefunctionprovidestheparameteriza-
tion (e.g.,the ��� shapedistribution is a1D functionparameterized
by distance),andrandomsamplingprovidesthetransformation.

The primary advantageof this approachis its simplicity. The



shapematchingproblemis reducedto sampling,normalization,and
comparisonof probabilitydistributions,whicharerelatively simple
taskswhencomparedto prior methodsthat requirereconstructing
a solid objector manifold surfacefrom degenerate3D data,reg-
isteringposetransformations,finding featurecorrespondences,or
fitting high-level models.Our approachworksdirectly on theorig-
inal polygonsof a 3D model,makingfew assumptionsabouttheir
organization,andthusit canbeusedfor similarity queriesin awide
varietyof databases,includingonescontainingdegenerate3Dmod-
els,suchasthosecurrentlyavailableon theWorld WideWeb.

In spiteof its simplicity, we expectthatour approachis ableto
discriminatewholeobjectswith differentgrossshapesrathereffec-
tively (resultsof experimentstestingthis hypothesisarepresented
in Section5). In addition, it hasseveral propertiesdesirablefor
similarity matching:

� Invariance: shapedistributionshave all the transformation
invariancepropertiesof the sampledshapefunction. For in-
stance,the D2 shapefunction yields invarianceunderrigid
motions(i.e., translation,rotation,and mirror imaging). In
this case,invarianceunderscalingcanbe addedby normal-
ization of shapedistributionsbeforecomparingthemand/or
by factoringout scaleduring the comparison. Other shape
functionsthat measureanglesor ratios betweenlengthsare
invariantto all similarity transformations.

� Robustness:asabonus,randomsamplingensuresthatshape
distributionsareinsensitiveto smallperturbations.Intuitively,
sinceevery point in a 3D model contributesequally to the
shapedistribution,themagnitudeof changesto theshapedis-
tribution aredirectly relatedto themagnitudeof thechanges
to the3D model. For example,if 10%of a 3D modelis per-
turbed(e.g.,by addingrandomnoise,by addingasmallbump
ontoasurface,or by addingsmallobjectsarbitrarily through-
out space),then a distribution of randomsamplesfrom the
modelcanchangeby at most10%. This propertyprovides
insensitivity to noise,blur, cracks,anddust in the input 3D
models.We conjecturethat the distributionsfor mostglobal
shapefunctionsbasedon distancesand/oranglesalso vary
continuouslyandmonotonicallyfor local shapechanges.

� Metric: thedissimilaritymeasureproducedby our approach
adoptsthe propertiesof the norm we useto compareshape
distributions. In particular, if the norm is a metric, so is our
dissimilaritymeasure.This propertyholdsfor mostcommon
norms,including

���
norms,EarthMover’s Distance,etc.

� Efficiency: constructionof the shapedistributions for a
databaseof 3D modelsis generallyfastandefficient. For in-
stance,thecomplexity of samplingtheD2 shapefunctionfor
a3D modelwith � trianglesand � samplesis �
	���
������ . The
resultingshapedistributionscanbe approximatedconcisely
by piecewise-linearfunctionswith constantcomplexity stor-
ageandcomparisoncosts.

� Generality: shapedistributionsare independentof the rep-
resentation,topology, or applicationdomainof the sampled
3D models.As a result,our shapesimilarity methodcanbe
appliedequallywell to databaseswith 3D modelsstoredas
polygonsoup,meshes,constructivesolidgeometry, voxels,or
any othergeometricrepresentationaslongasasuitableshape
function canbe computedfrom eachrepresentation.More-
over, a single database(suchas the World Wide Web) can
contain3D modelsin a variety of different representations
andfile formats. Finally, shapedistributionscanbe usedin

many differentapplicationdomainsfor comparisonof natu-
ral, deformableshapes(e.g.,animals)and/orman-madeob-
jects(e.g.,machinedparts).

The interestingissuesto beaddressedin implementingthepro-
posedshapematchingapproachare: 1) to selectdiscriminating
shapefunctions,2) to constructshapefunctionsfor each3D model
efficiently, and3) to computea dissimilarity measurefor pairsof
distributions. We addresstheseissuesin the following sections.
The challengeis to find methodswhosecombinationproducesa
dissimilarity measurewith the desirablepropertieslisted above,
while providing enoughdiscriminationbetweensimilaranddissim-
ilar shapesto be useful for a particularapplication. We propose
suchmethodsandevaluatethemexperimentallyin Section5 for a
databaseof 3DpolygonalmodelsdownloadedfromtheWorldWide
Web.

4 Method

In this section,we provide a detaileddescriptionof the methods
we useto build shapedistributionsfrom 3D polygonalmodelsand
computeameasureof theirdissimilarities.

4.1 Selecting a Shape Function

Thefirst andmostinterestingissueis to selectafunctionwhosedis-
tributionprovidesagoodsignaturefor theshapeof a3D polygonal
model. Ideally, the distribution shouldbe invariantundersimilar-
ity transformationsandtessellations,andit shouldbeinsensitive to
noise,cracks,tessellation,andinsertion/removal of smallpolygons.

In general,any functioncouldbesampledto form ashapedistri-
bution,includingonesthatincorporatedomain-specificknowledge,
visibility information(e.g., the distancebetweenrandombut mu-
tually visible points),and/orsurfaceattributes(e.g.,color, texture
coordinates,normalsandcurvature).However, for thesake of clar-
ity, we focuson purelygeometricshapefunctionsbasedon simple
measurements(e.g.,angles,distances,areas,andvolumes).Specif-
ically, wehaveexperimentedwith thefollowing shapefunctions:

� A3: Measurestheanglebetweenthreerandompointson the
surfaceof a3D model.

� D1: Measuresthedistancebetweenafixedpointandoneran-
dompointonthesurface.Weusethecentroidof theboundary
of themodelasthefixedpoint.

� D2: Measuresthedistancebetweentwo randompointsonthe
surface.

� D3: Measurestheareaof thetrianglebetweenthreerandom
pointson thesurface,andtakesthesquareroot.

� D4: Measuresthe volume of the tetrahedronbetweenfour
randompointson thesurface,andtakesthecuberoot.

Theseshapefunctionswerechosenmostly for their simplicity
andinvariances.In particular, they areeasyto computeandproduce
distributionsthatareinvariantto rigid motions.They areinvariant
to tessellationof the3D polygonalmodel,sincepointsareselected
randomlyfrom thesurface.They areinsensitive to smallperturba-
tionsdueto noise,cracks,andinsertion/removal of polygons,since
samplingis areaweighted. Finally, the ��� shapefunction is in-
variantto scale,while the othershave to be normalizedto enable
comparisons.



Weexpectthesegeneral-purposeshapefunctionsto befairly dis-
tinguishingassignaturesfor 3D shape,assignificantchangesto the
rigid structuresin the3D modelaffect thegeometricrelationships
betweenpoints on their surfaces. For instance,considerthe D2
shapefunction,whosedistributionsareshown for a few cannonical
shapesin Figure1(a-f). Notehow each distribution is distinctive.
Also, notehow continuouschangesto the3D modelaffect theD2
distributions. For instance,Figure 1(g-h) shows the distancedis-
tributionsof two unit spheresasthey move 0, 1, 2, 3, and4 units
apart,respectfully. In eachdistribution, the first humpresembles
the linear distribution of a sphere,while the secondhump is the
cross-termof distancesbetweenthe two spheres.As the spheres
move fartherapart,theshapedistributionchangescontinuously.

a)Line segment.

c) Triangle.

e)Cylinder(withoutcaps).

g) Two adjacentunit
spheres.

b) Circle.

d) Cube.

f) Sphere.

h) Two unit spheresseparated
by 1, 2, 3, and4 units.

Figure1: ExampleD2 shapedistributions.

4.2 Constructing Shape Distributions

Having chosena shapefunction, the next issueis to computeand
storea representationof its distribution. Analytic calculationof
the distribution is feasibleonly for certaincombinationsof shape
functionsandmodels(e.g., the ��� function for a sphere).So, in
general,we employ stochasticmethods.Specifically, we evaluate
� samplesfrom the shapedistribution andconstructa histogram
by countinghow many samplesfall into eachof � fixedsizedbins.
Fromthehistogram,wereconstructapiecewiselinearfunctionwith�

( ��� ) equallyspacedvertices,which formsour representation
for theshapedistribution. We computetheshapedistributiononce
for eachmodelandstoreit asasequenceof V integers.

Oneissuewe mustbeconcernedwith is samplingdensity. The
moresampleswe take, the moreaccuratelyandpreciselywe can

reconstructthe shapedistribution. On the otherhand,the time to
samplea shapedistribution is linearly proportionalto the number
of samples,so thereis an accuracy/time tradeoff in the choiceof
� . Similarly, moreverticesyieldshigherresolutiondistributions,
while increasingthestorageandcomparisoncostsof theshapesig-
nature.In ourexperiments,wehavechosento erronthesideof ro-
bustness,takingalargenumbersof samplesfor eachhistogrambin.
Empirically, we have found that ����� ���"!$# samples,����� ���"!
bins, and

� �&%�! verticesyields shapedistributions with low
enoughvarianceand high enoughresolutionto be useful for the
databaseswe’ve tested.

A secondissueis samplegeneration.As our shapefunctionsare
describedin termsof randompointson thesurfaceof a 3D model,
weimplementedthefollowingmethodtogenerateunbiasedrandom
pointswith respectto thesurfaceareaof a polygonalmodel.First,
weiteratethroughall polygons,splittingtheminto trianglesasnec-
essary. Then,for eachtriangle,we computeits areaandstoreit in
anarrayalongwith thecumulative areaof trianglesvisitedso far.
Next, we selecta trianglewith probabilityproportionalto its area
by generatinga randomnumberbetween0 andthe total cumula-
tiveareaandperformingabinarysearchon thearrayof cumulative
areas.For eachselectedtrianglewith vertices ���(')�*',+-� , we con-
structa pointon its surfaceby generatingtwo randomnumbers,.$/
and. # , between0 and1, andevaluatingthefollowing equation:

0 �1�2�4365 . / �)�6785 . / �2�439. # �)�:7:5 . / . # + (1)

Intuitively, 5 .$/ setsthepercentagefrom vertex A to theoppos-
ing edge,while . # representsthe percentagealongthis edge(see
Figure2). Taking the square-rootof .$/ gives a uniform random
point (with respectto surfacearea)in thetriangle.

A

B C

r1

r2

Figure2: Generatinga randompoint in a triangle.

4.3 Comparing Shape Distributions

Having constructedthe shapedistributions for two 3D models,
we are left with the task of comparingthem to producea dis-
similarity measure. There are many standardways of compar-
ing two functions. Examplesinclude the Minkowski

� �
norms,

Kolmogorov-Smirnov distance,Kullback-Leiblerdivergencedis-
tances[37], Matchdistances[49, 57], EarthMover’s distance[48],
andBhattacharyyadistance[15]. Othermethods,perhapsbasedon
2D curvematching,couldalsobeused.

In our implementation,we have experimentedwith six simple
dissimilaritymeasuresbasedon

���
normsof theprobabilityden-

sity functions(pdfs)andcumulativedistributionfunctions(cdfs)for
���1�;'2�$'=< .1 In thedescriptionsbelow, assume> and
 represent
pdfsfor two models,while ?> and ?
 representthecorrespondingcdfs
– i.e., ?>@��AB�C� DEGF > .

1Thecdf H / andthecdf H F normsarethe H / EarthMover’s [48] and
theKolmogorov-Smirnov distances,respectively.
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� CDF
� �
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� �
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Sinceeachshapedistribution is representedasa piecewise lin-
earfunction,analyticcomputationof thesenormscanbedoneeffi-
ciently in time proportionalto thenumberof verticesusedto store
thedistributions.

For certainshapefunctions,wemustaddanormalizationstepto
thecomparisonprocessto accountfor differencesin scale.Sofar,
we have investigatedthreemethodsfor normalization:1) align the
maximumsamplevalues,2) align themeansamplevalues,and3)
searchfor thescalethatproducetheminimaldissimilaritymeasure
during eachcomparison.The first two of thesecanbe evaluated
analytically, andthusarevery fast.However, they maynotproduce
theminimaldissimilaritymeasuresdueto mismatchingscales.The
third methodrequiresan optimizationprocedure.Specifically, if
> and 
 representshapedistributionsfor two models,theminimal
dissimilaritymeasurewith normalizationis thendefinedas:

U(V�WX �J�)>@��AB�Y'YZ[
��)Z[AB�2� (2)

We have implementeda simple methodto perform the search
over Z . First,we scaleour distributionssothattheaveragesample
in eachdistributionhasvalue1. Thenweevaluate�J�)>@��AB�Y',Z2
��)Z[AB�2�
for valuesof \�]"^_Z from -10 to 10, in 100equallyspacedintervals.
Wereturntheminimumamongtheresultsasthedissimilaritymea-
surefor thenormalizedshapedistributions.

5 Experimental Results

Themethodsdescribedin theprecedingsectionshave beenimple-
mentedin C++ andincorporatedinto ashapematchingsystemthat
runson SiliconGraphicsandPC/Windowscomputers.

In orderto test the effectivenessof this system,we executeda
seriesof shapematchingexperimentswith a databaseof 3D mod-
els downloadedfrom a variety of siteson the World Wide Web.
Themodelscomprisedsetsof independentpolygons,withoutstruc-
ture,adjacency information,or registeredcoordinatesystems.The
modelscontainedanywhere from 20 to 186,000polygons,with
the averagemodel containingaround7,000polygons. Very few
of the modelsformed a single manifold surfaceor even a well-
definedsolidregion. Instead,they almostall containedcracks,self-
intersections,missingpolygons,one-sidedsurfaces,and/ordouble
surfaces– noneof which causedsignificantartifactsduring ren-
deringwith a z-buffer, but all of which areproblematicfor most
3D shapematchingalgorithms.Theexperimentswererun on a PC
with a400MHzPentiumII processorand256MBof memory.

5.1 Robustness Results

In our first experiment,we testedthe robustnessof our dissimilar-
ity measureto transformationsandperturbationsof the3D models.
Specifically, wechosetenrepresentative3D models(shown in Fig-
ure5), andappliedsix transformationsto eachof them.Theresult-
ing databasehadsevenversionsof eachmodel(theoriginalandsix
transformedvariants),making70 modelsin all. The transforma-
tionswereasfollows:

� Scale:Grow by a factorof 10 in everydimension.� Rotate: Rotateby 45 degreesthreetimes,first aroundtheX
axis,thenaroundtheY axis,thenaroundtheZ axis.

� Mirr or: Mirror over the YZ plane,thenover the XZ plane,
thenover theXY plane.� Noise:Perturbeachvertex of everypolygonrandomlyby 1%
of thelongestlengthof themodel’sboundingbox. As vertices
werenot sharedby adjacentpolygons,this transformationin-
troducedthin cracks(seeFigure3(a)).� Delete: Randomlyremove 5% of the polygons. (note the
holesin thebumperandwindshieldof thecarin Figure3(b)).� Insert: Randomlyinsertcopiesof 5% of thepolygons.

a)1%Noise. b) 5% Deletion.

Figure3: A carmodelafter(a)perturbingall theverticesby 1%,or
(b) removing 5%of thepolygons.

We testedtherobustnessof our samplingmethodby generating
theD2 shapedistribution for eachmodel.Theresultingshapedis-
tributionsfor all 70 modelsareplottedin Figure4 (scaledto align
their meanvalues).Note thatonly tendistinctcurvesareapparent
in theplot. This is becauseeach“thick” curveappearsastheresult
of sevennearlyoverlappingshapedistributionscomputedfor differ-
entvariantsof thesamemodel. For instance,thecurve containing
thetall spike in themiddleis drawn seventimes,oncefor eachvari-
antof themugmodel. Theresultsof this experimentdemonstrate
oursamplingmethod’s repeatabilityandits robustnessto similarity
transformations,noise,andsmallcracksandholes.
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Figure4: D2 shapedistributionsfor sevenvariantsof tenmodels.

Wefurtherinvestigatedtherobustnessof ourmethodby testingit
with differentpolygontessellationsof two 3D shapes.Weusedthe
SimplificationEnvelopessoftwareprovidedby Cohenet al. [19] to
produce8 versionsof theStanfordBunny [38] rangingfrom 70,000
down to 600triangles,and6 versionsof asphererangingfrom 200
down to 28 triangles.Then,we constructedD2 shapedistributions
for eachof theseversions.Theresulting14curvesareshown in Fig-
ure6. Notethat theshapedistributionsvary slightly from original
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Figure5: Imagesof theten3D modelsusedin our initial robustnessexperiments.

modelsto thesimplifiedversions,but not significantlywhencom-
paredto differencesbetweentheoriginal models.This experiment
corroboratesourexpectationthatshapedistributionsareinsensitive
to changingtessellationand,morespecifically, stableundermodel
simplification.
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Figure6: D2 shapedistributionsfor simplifiedversionsof theStan-
ford bunny andasphere.

5.2 Discrimination Results

In our secondexperiment,we investigatedtheability of our shape
matching method to discriminateamong similar and dissimilar
shapes.As a first steptowardsthisgoal,wecomputedour dissimi-
larity measurefor all pairsof the70shapedistributionsdescribedin
theprevioussection.During this shapematchingtest,thedistribu-
tionswerecomparedwith thepdf

� / normandthey werescaledby
aligningtheirmeanvalues.Theresultingdissimilaritymeasuresare
shown asa matrix in Figure7. In this visualizationof thematrix,
the lightnessof eachelement ��`a')b�� is proportionalto the magni-
tudeof thecomputeddissimilaritybetweenmodels̀ andb . Thatis,
eachrow andcolumnrepresentthedissimilaritymeasuresfor asin-
gle modelwhencomparedto all othermodelsin thedatabase(the
matrix is symmetric). Darker elementsrepresentbettermatches,
while lighterelementsindicateworsematches.Theorderingof the

classesis alphabeticalsooneshouldnotexpectany particulardark-
nesspatternexcepttheclearlyvisible7x7blocksof matrixelements
with indistinguishablecolors.Thispatterndemonstratestherobust-
nessof our distribution comparisonmethod,asall variantsof the
samemodelproducealmostthe samedissimilaritymeasurewhen
comparedto all variantsof every othermodel. Moreover, notethe
darkerblocksof 7x7matrixelementsalongthemaindiagonal.This
patternresultsfrom thefactthatall 7 variantsof everyshapematch
eachotherbetterthan they matchany othershape. Accordingly,
for this simpledatabase,our methodcouldbeusedto perfectlyas-
signall 70modelsto oneof the10classesusinganearestneighbor
classifier.

Althoughtheresultsof this experimentareencouraging,amore
interestingand challenging test is to determinehow well our
methodcandiscriminateclassesof shapesin a largerandmoredi-
versedatabaseof 3D models.To investigatethis question,we ex-
ecuteda seriesof testson a databaseof 133modelsretrievedfrom
theWorld Wide Webandgroupedqualitatively (by functionmore
thanby shape)into 25 classesby a third party. Figure9 summa-
rizesthetypesandsizesof theseclasses.First,notethateachclass
containsanarbitrarynumberof objects,usuallydeterminedby how
many modelswere found in a quick searchof the Web (e.g., the
planeclasshassignificantlymoremodelsthan the others). Sec-
ond, note that the similarity betweenclassesvaried greatly. For
instance,someclasseswerevery similar to oneanother(e.g.,pens
andmissileslook alike), while somewerequite distinct from the
othersin thedatabase(belts). Third, notethat thesimilarity of ob-
jectswithineach classalsovaried.Someclasses(suchasball,mug,
openbook,pen,andsub)contained3D modelswith shapesgreatly
resemblingeachother, while others(suchasanimal,boat,car, and
plane)containedmodelswith a wide varietyof shapes.This diver-
sity within classesis shown in Figure8, which containspictures
of threemodelsfrom themug,car, andboatclasses.Notethat the
mugsarevisually quite similar, while the carsandboatsaresig-
nificantly different. Anotherclass,planes,is even more diverse,
containingbiplanes,fighter jets,propellerplanes,andcommercial
jets,all similar in function,but quitedifferentin shape.

To investigatetheability of our shapematchingmethodsto dis-
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Figure7: Similarity matrix for seven variantsof ten 3D models.
Lightnessindicatesthedissimilaritybetweenmodels.

criminatebetweenclassesof objects,werananexperimentby com-
puting the D2 shapedistributions for all 133 models. They are
shown in Figure9 – eachplot shows theD2 distribution for all 3D
modelsof oneclass,normalizedby their means.Examiningthese
distributionsqualitatively, we find that the shapedistributionsfor
mostobjectswithin asingleclassarehighly correlated,asmultiple
curvesappearalmoston topof oneanother. Moreover, many of the
classeshave a distinctive shapedistribution thatcouldbeusedfor
classification.For instance,balls have a nearlylinear distribution
with a sharpfalloff on the right, mugshave onesharppeakin the
middle, beltshave a peakon the right, and lampshave two large
peakswith avalley in between.

To a limited degree,it is evenpossibleto infer thegrossshapeof
someobjectsfrom theirD2 shapedistributions.For instance,refer-
ring backto Figure1, ballshaveadistributionresemblingasphere,
beltsresembleacircle,mugsresembleacylinder, andlampsresem-
bletwospheresseparatedbysomedistance.Althoughseveralof the
otherclasseshavevisually lessdistinctiveunimodalshapedistribu-
tions,we canseethat the“humps” in thedistributionsof different
classesareusuallydistinguishableby their locations,heights,and
shapes,leadingusto believe thatshapedistributionscouldbeused
effectively for objectclassification.

To test this hypothesisand to investigatewhich combinations
of shapefunctions,normalizationmethods,andcomparisonnorms
provided thebestclassificationmethods,we rana seriesof “leave
oneout” classificationtests.In every test,we comparedtheshape
distribution of eachmodel in the database(the “query” model)
againstall others. The testwas repeated90 times for all combi-
nationsof the 5 shapefunctions,3 normalizationmethods,and6
comparisonnormsdescribedin Section4.

Tables1-3 containthreecross-sectionsof the resultsmeasured
in thesetests. In eachtable, the first columnindicatesthe shape
function,normalizationmethod,or comparisonnormused(unless
otherwisespecified,the D2 shapefunction, the MEANnormaliza-

Mug 1

Antiquecar

Galleon(with sails)

Mug 2

Convertible

Tugboat

Mug 3

Camaro

Warship

Figure8: Exampleclassesof shapesin our database:mugs(top
row), cars(middlerow), andboats(bottomrow).

tion method,andthePDF
� / normwasused).Thesecondcolumn

(“First Tier”) lists thepercentageof top cd3:� matches(excluding
thequery)from the query’s class,wherek is thesizeof theclass.
This criteria is stringency, sinceeachmodel in the classhasonly
onechanceto bein thefirst tier. An idealmatchingwould give no
falsepositivesandreturnascoreof 100%.Thethird column(“Sec-
ond Tier”) lists the sametype of result,but for the top �
�)ce3f� �
matches.The fourth columnlists the percentageof test in which
the top match(“NearestNeighbor”) was from the query’s class.
Finally, the right-mostcolumncontainsthecomputationtimesfor
samplingandcomparisonof shapedistributions. Note that sam-
pling timesarein seconds,while comparisontimesarein millisec-
onds.

Fromtheresultsin thesetables,wemake thefollowing observa-
tions.First, theD2 shapefunctionclassifiedobjectsbetterthanthe
othershapefunctionsin our tests.Thereareseveralplausibleinter-
pretationsfor why othershapefunctionsprovedlessdiscriminatory
thanD2. For one,shapefunctionssuchasD1 aredifficult to rep-
resentaccurately, asempiricallythey containsharppeaks(e.g.,the
D1 distribution for asphereis asingledeltafunction).For another,
we noticeda trendthat shapedistributionsfor D3 andD4 appear
similar for many typesof models.

Second,in our tests,theMAX scalingmethodis not asgoodas
MEANor SEARCHasit suffersfrom thefollowing problem.If the
idealizedshapedensityfalls off nearthe tail, thenthereis a rela-
tively high variationin themaximumsamplefound(dueto anout-
lier). Scalingtheentireshapedistributionbasedon thisonesample
affects the signaturefor the entireobject. This result is intuitive,
asthe meanis a morestablestatisticthanthe maximum. For the
othernormalizationmethods(MEANandSEARCH) theclassifica-
tion resultswereapproximatelythesame.We foundthatsearching
helpsminimizethedifferencebetweenshapedistributions,but this
did notimprovethediscriminabilityof themethodonthisdatabase.

Third, thePDF
� / normperformedthebestfor comparingshape



Shape First Second Nearest Sample
Function Tier Tier Neighbor Time(s)

A3 38% 54% 55% 12.6
D1 35% 48% 56% 8.6
D2 49% 66% 66% 8.6
D3 42% 58% 58% 13.5
D4 32% 42% 47% 15.8

Table1: Comparisonof shapefunctions(usingMEANandPDF gih ).
Scale First Second Nearest Compare

Method Tier Tier Neighbor Time(ms)
MAX 41% 56% 63% 0.1

MEAN 49% 66% 66% 0.1
SEARCH 49% 66% 68% 9.0

Table2: Comparisonof normalizationmethods(usingD2 andPDF gCh ).
Norm First Second Nearest Compare

Method Tier Tier Neighbor Time(ms)
PDF g h 49% 66% 66% 0.1
PDF g
j 47% 64% 62% 0.1
PDF gBk 42% 59% 61% 0.1
CDF gCh 46% 63% 59% 0.2
CDF g j 44% 63% 59% 0.1
CDF g k 43% 59% 57% 0.1

Table3: Comparisonof normmethods(usingD2 andMEAN).

distributionsin ourtest.In general,thepdfsdid betterthanthecdfs,
possiblybecausepeaksandvalleys of pdf curvesareeasierto dis-
criminateusing

� �
normsthanthesteepareasandplateausof cdf

curves. Meanwhile,the
�
# and

� F normsperformedworsethan
the

� / norms,in general.For higher� , the
� �

normsbecomeless
forgiving of large differences,and thus perhapsour comparisons
becamemoresensitive to outliersor normalizationerrors.

Finally, we examinethe utility of our dissimilarity measurefor
classifyingobjectsfrom thedatabasewith 133models.In this test,
we usedtheD2 shapefunction,MEANnormalizationmethod,and� / norm. Figure10 shows the similarity matrix for this test. As
in Figure7, the lightnessof eachelement ��`a')b�� is proportionalto
themagnitudeof thecomputeddissimilaritybetweenmodels̀ and
b (i.e.,darker elementsrepresentbettermatches).Thus,if thesim-
ilarity metric were ideal (i.e., if it were able to readthe mind of
thehumanthat formedtheclasses),thedissimilaritymeasuresfor
modelsin the sameclasswould be less(appeardarker) than for
onesin different classes.That is, we hopeto seea sequenceof
darker blocksalongthemaindiagonal,with sizescorrespondingto
thenumbersof modelsin eachclass,with mostly lighter colorsin
the off-diagonalmatrix elements.Of course,given the ambiguity
anddiversityof thedatabase,webelieve thatit wouldbeoptimistic
to expectthis result,evenfor a humanassigningdissimilaritymea-
sures.

Examiningthesimilaritymatrixin Figure10,weseethatthedis-
similarity valuescomputedwith our methodarefairly discriminat-
ing in this test.Therearemany darkblocksreadilyapparentalong
the main diagonalcorrespondingto groupsof objectswithin the
sameclassthatproducegoodmatches(e.g.,mugs,phones,chairs,
planes,spaceships,etc.). Meanwhile,mostelementsoff-diagonal
are lighter shades,indicating relatively few falsepositives. Off-
diagonalblocksof darkelementsoftenrepresentmatchesbetween
classes(e.g.,spaceshipversusplane). Surprisingly, several of the

classeswith very diversemodels(e.g.,carsandplanes)canbedis-
tinguishedvery clearly asdark blocksin this plot, indicatingthat
our methodis usefulfor discriminatingthemfrom othermodelsin
the databasein spite of their diversity. On the otherhand,there
areotherclasseswhosemodelsdid notmatchwell in this test(e.g.,
boats,helicopters,etc.). Someof thesefailuresaredueto the in-
herentdifficultiesof shapematchingwithout realworld knowledge
(e.g., the boatswere moresimilar in function thanshape),while
othersare probablydue to the limitations of our implementation
(e.g.,

� �
normsproducelargedissimilaritiesfor lamps). Overall,

for 66%of themodels,ourprototypesystemproducedatop-match
within thesameclass.Wearenotawareof anothershapematching
methodthatcouldachieve this resultfor suchadifficult database.

6 Discussion and Conclusion

Themaincontributionof thispaperis theideaof usingrandomsam-
pling to produceacontinuousprobabilitydistribution to beusedas
a signaturefor 3D shape.The key featureof this approachis that
it provides a framework within which arbitrary and possiblyde-
generate3D modelscanbetransformedinto functionswith natural
parameterizations,allowing simple function comparisonmethods
to producerobustdissimilaritymetrics.

Our initial experiencesverify many of the expectedfeaturesof
this approach.First, it is simple to implement– e.g., our whole
systemrequiresaround2000linesof C++ code.Second,it is fast–
e.g.,thesystemtakesaroundtensecondsto constructashapedistri-
butionfor typical3D modelscontainingthousandsof polygons,and
it computesthe dissimilaritymeasurefor any pair of shapedistri-
butionsin lessthanamillisecond.Third, invarianceandrobustness
propertiescanbeensuredby choosingshapefunctionsandnorms
with thedesiredproperties– e.g.,the ��� shapefunction is invari-
antto rigid bodyandmirror transformations,andit is insensitive to
noise,blur, cracks,tessellation,anddust in the input 3D models.
Normalizationof shapedistributionsprovidesinvarianceto scale,
andusingthe

�I�
normfor comparisonof distributionsensuresthat

ourdissimilaritymeasureis ametric.
Our experimentalresultsdemonstratethat shapedistributions

canbefairly effectiveatdiscriminatingbetweengroupsof 3D mod-
els.Overall,weachieved66%accuracy in ourclassificationexper-
imentswith a diversedatabaseof degenerate3D modelsassigned
to functionalgroups. Unfortunately, it is difficult to evaluatethe
quality of this resultascomparedto othermethods,asit depends
largelyonthedetailsof our testdatabase.However, webelieve that
it demonstratesthatour methodis usefulfor thediscriminationof
3D shapes,at leastfor preclassificationprior to moreexactsimilar-
ity comparisonswith moreexpensive methods.

An importantissuefor further researchin 3D shapematching
is developmentof benchmarkdatabasescontainingdegenerate3D
polygonalmodelsso thatdifferentshapeanalysismethodscanbe
compared.Of course,therearealsomany improvementsthatcould
bemadetoourinitial prototypesystemin futurework. For instance,
onecouldinvestigatemoreefficientshapedistributionsamplingand
reconstructionmethods,possiblybasedon adaptive strategies. Or,
onecouldalsolookatcombiningthedistributionsof multipleshape
functionsinto a singleclassifier, or combiningshapedistributions
with other attributes(e.g., surfacecolors) for improved discrim-
inability. We arecurrently investigatinguserinterfacesfor speci-
fying 3D shape-basedqueriesin aninteractive retrieval system.

Anotherimportanttopic for futurework is to studythetheoreti-
cal propertiesof shapedistributions.For instance,it wouldbenice
to develop a theoryconcerningwhich shapefunctionsandnorms
will be good classifiersof shape. We are investigatingprovable
propertiesfor the ��� shapefunction. Uniquenesspropertiesfor



homometricdiscrete point sets(oneswith the samedistancedis-
tribution) have beenproven by Skienaet al. [51]. They developed
upperandlowerboundsonthenumberof non-congruenthomomet-
ric discretepoint setsin arbitrarydimensions.Propertieshave also
beenproven for theRadontransformfor a convex region + in the
plane[46, 29]. This transformmapsany orientedline to thelength
of its intersectionwith + . It completelyspecifiestheregion + , and
it canbeinvertedfairly efficiently. TheRadontransformhasfound
many usesin X-ray tomography. Proving uniquenessproperties
for othercontinuousshapefunctions,suchas ��� , mayhave simi-
lar implicationsfor reconstructionandmanipulationof 3D models
representedby shapedistributions.

Finally, it would be interestingto investigatewhetherthe pro-
posedshapematchingmethodis useful in other applicationdo-
mains,suchascharacterrecognition,sign-languagerecognition,or
molecularbiology.
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Figure9: D2 shapedistributionsfor 133modelsgroupedinto 25 classes.
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Figure10: Similarity matrix for ourdatabaseof 1333D models.


