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ABSTRACT

In this paper we describe a new tool for interactive free-form fair
surface design. By generalizing classical discrete Fourier analysis
to two-dimensional discrete surface signals – functions defined on
polyhedral surfaces of arbitrary topology –, we reduce the prob-
lem of surface smoothing, or fairing, to low-pass filtering. We
describe a very simple surface signal low-pass filter algorithm that
applies to surfaces of arbitrary topology. As opposed to other exist-
ing optimization-based fairing methods, which are computationally
more expensive, this is a linear time and space complexity algo-
rithm. With this algorithm, fairing very large surfaces, such as
those obtained from volumetric medical data, becomes affordable.
By combining this algorithm with surface subdivision methods we
obtain a very effective fair surface design technique. We then
extend the analysis, and modify the algorithm accordingly, to ac-
commodate different types of constraints. Some constraints can
be imposed without any modification of the algorithm, while others
require the solution of a small associated linear system of equations.
In particular, vertex location constraints, vertex normal constraints,
and surface normal discontinuities across curves embedded in the
surface, can be imposed with this technique.

CR Categories and Subject Descriptors: I.3.3 [Computer
Graphics]: Picture/image generation - display algorithms; I.3.5
[Computer Graphics]: Computational Geometry and Object Mod-
eling - curve, surface, solid, and object representations; J.6 [Com-
puter Applications]: Computer-Aided Engineering - computer-
aided design

General Terms: Algorithms, Graphics.

1 INTRODUCTION

The signal processing approach described in this paper was origi-
nally motivated by the problem of how to fair large polyhedral sur-
faces of arbitrary topology, such as those extracted from volumetric
medical data by iso-surface construction algorithms [21, 2, 11, 15],
or constructed by integration of multiple range images [36].

Since most existing algorithms based on fairness norm opti-
mization [37, 24, 12, 38] are prohibitively expensive for very large
surfaces – a million vertices is not unusual in medical images –,
we decided to look for new algorithms with linear time and space
complexity [31]. Unless these large surfaces are first simplified
[29, 13, 11], or re-meshed using far fewer faces [35], methods
based on patch technology, whether parametric [28, 22, 10, 20, 19]
or implicit [1, 23], are not acceptable either. Although curvature
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continuous, a patch-based surface interpolant is far more complex
than the original surface, more expensive to render, and worst of all,
does not remove the high curvature variation present in the original
mesh.

As in the fairness norm optimization methods and physics-based
deformable models [16, 34, 30, 26], our approach is to move the
vertices of the polyhedral surface without changing the connectivity
of the faces. The faired surface has exactly the same number of
vertices and faces as the original one. However, our signal process-
ing formulation results in much less expensive computations. In
these variational formulations [5, 24, 38, 12], after finite element
discretization, the problem is often reduced to the solution of a large
sparse linear system, or a more expensive global optimization prob-
lem. Large sparse linear systems are solved using iterative methods
[9], and usually result in quadratic time complexity algorithms. In
our case, the problem of surface fairing is reduced to sparse matrix
multiplication instead, a linear time complexity operation.

The paper is organized as follows. In section 2 we describe how
to extend signal processing to signals definedon polyhedral surfaces
of arbitrary topology, reducing the problem of surface smoothing to
low-pass filtering, and we describe a particularly simple linear time
and spacecomplexity surface signal low-pass filter algorithm. Then
we concentrate on the applications of this algorithm to interactive
free-form fair surface design. As Welch and Witkin [38], in section
3 we design more detailed fair surfaces by combining our fairing
algorithm with subdivision techniques. In section 4 we modify our
fairing algorithm to accommodate different kinds of constraints.
Finally, in section 5 we present some closing remarks.

2 THE SIGNAL PROCESSING APPROACH

Fourier analysis is a natural tool to solve the problem of signal
smoothing. The space of signals – functions defined on certain
domain – is decomposed into orthogonal subspacesassociated with
different frequencies, with the low frequency content of a signal
regarded as subjacent data, and the high frequency content as noise.

2.1 CLOSED CURVE FAIRING

To smooth a closed curve it is sufficient to remove the noise from
the coordinate signals, i.e., to project the coordinate signals onto the
subspace of low frequencies. This is what the method of Fourier
descriptors, which dates back to the early 60’s, does [40]. Our ap-
proach to extend Fourier analysis to signals defined on polyhedral
surfaces of arbitrary topology is based on the observation that the
classical Fourier transform of a signal can be seen as the decompo-
sition of the signal into a linear combination of the eigenvectors of
the Laplacian operator. To extend Fourier analysis to surfaces of
arbitrary topology we only have to define a new operator that takes
the place of the Laplacian.

As a motivation, let us consider the simple case of a discrete time
n-periodic signal – a function defined on a regular polygon ofn ver-
tices –, which we represent as a column vector x = (x1; : : : ; xn)

t.
The components of this vector are the values of the signal at the
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Figure 1: The two weighted averaging steps of our fairing algo-
rithm. (A) A first step with positive scale factor � is applied to all
the vertices. (B) Then a second step with negative scale factor � is
applied to all the vertices.

vertices of the polygon. The discrete Laplacian of x is defined as

�xi =
1

2
(xi�1 � xi) +

1

2
(xi+1 � xi) ; (1)

where the indices are incremented and decremented modulo n. In
matrix form it can be written as follows

�x = �Kx ; (2)

where K is the circulant matrix
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Since K is symmetric, it has real eigenvalues and eigenvectors.
Explicitly, the real eigenvalues k1; : : : ; kn of K , sorted in non-
decreasing order, are

kj = 1� cos(2�bj=2c=n) ;

and the corresponding unit length real eigenvectors, u1; : : : ; un,
are

(uj)h =

8<
:
p

1=n if j = 1p
2=n sin(2�hbj=2c=n) if j is evenp
2=n cos(2�hbj=2c=n) if j is odd :

Note that 0 � k1 � � � � � kn � 2, and as the frequency kj
increases, the corresponding eigenvectoruj , as a n-periodic signal,
changes more rapidly from vertex to vertex.

To decompose the signal x as a linear combination of the real
eigenvectors u1; : : : ; un

x =

nX
i=1

�i ui ; (3)

is computationally equivalent to the evaluation of the Discrete
Fourier Transform of x. To smooth the signal x with the method
of Fourier descriptors, this decomposition has to be computed, and
then the high frequency terms of the sum must be discarded. But
k =
1
�

f(k)
1:0

k =
1
�

0 kPB2 0 kPB 2

f(k)N1:0
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Figure 2: (A) Graph of transfer function f(k) = (1��k)(1��k)
of non-shrinking smoothing algorithm.

this is computationally expensive. Even using the Fast Fourier
Transform algorithm, the computational complexity is in the order
of n log(n) operations.

An alternative is to do the projection onto the space of low
frequencies only approximately. This is what a low-pass filter
does. We will only consider here low-pass filters implemented as a
convolution. A more detailed analysis of other filter methodologies
is beyond the scope of this paper, and will be done elsewhere [33].
Perhaps the most popular convolution-based smoothing method for
parameterized curves is the so-called Gaussian filtering method,
associated with scale-space theory [39, 17]. In its simplest form, it
can be described by the following formula

x0i = xi + ��xi ; (4)

where 0 < � < 1 is a scale factor (for � < 0 and � � 1 the
algorithm enhances high frequencies instead of attenuating them).
This can be written in matrix form as

x0 = (I � �K)x : (5)

It is well known though, that Gaussian filtering producesshrink-
age, and this is so because the Gaussian kernel is not a low-pass
filter kernel [25]. To define a low-pass filter, the matrix I � �K
must be replaced by some other function f(K) of the matrix K .
Our non-shrinking fairing algorithm, described in the next section,
is one particularly efficient choice.

We now extend this formulation to functions defined on surfaces
of arbitrary topology.

2.2 SURFACE SIGNAL FAIRING

At this point we need a few definitions. We represent a polyhedral
surface as a pair of lists S = fV;Fg, a list of n vertices V , and a
list of polygonal faces F . Although in our current implementation,
only triangulated surfaces, and surfaces with quadrilateral faces are
allowed, the algorithm is defined for any polyhedral surface.

Both for curves and for surfaces, a neighborhood of a vertex
vi is a set i? of indices of vertices. If the index j belongs to
the neighborhood i?, we say that vj is a neighbor of vi. The
neighborhood structure of a polygonal curve or polyhedral surface
is the family of all its neighborhoods fi? : i = 1; 2; : : : ; ng. A
neighborhood structure is symmetric if every time that a vertex vj
is a neighbor of vertex vi, also vi is a neighbor of vj . With non-
symmetric neighborhoods certain constraints can be imposed. We
discuss this issue in detail in section 4.

A particularly important neighborhood structure is the first order
neighborhood structure, where for each pair of vertices vi and vj
that share a face (edge for a curve), we makevj a neighborof vi, and
vi a neighbor of vj . For example, for a polygonal curve represented
as a list of consecutive vertices, the first order neighborhood of a
vertex vi is i? = fi � 1; i + 1g. The first order neighborhood
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Figure 3: (A) Sphere partially corrupted by normal noise. (B)
Sphere (A) after 10 non-shrinking smoothing steps. (C) Sphere (A)
after 50 non-shrinking smoothing steps. (D) Sphere (A) after 200
non-shrinking smoothing steps. Surfaces are flat-shaded to enhance
the faceting effect.

structure is symmetric, and since it is implicitly given by the list
of faces of the surface, no extra storage is required to represent
it. This is the default neighborhood structure used in our current
implementation.

A discrete surface signal is a function x = (x1; : : : ; xn)
t de-

fined on the vertices of a polyhedral surface. We define the discrete
Laplacian of a discrete surface signal by weighted averages over
the neighborhoods

�xi =
X
j2i?

wij (xj � xi) ; (6)

where the weights wij are positive numbers that add up to one ,P
j2i?

wij = 1, for each i. The weights can be chosen in many
different ways taking into consideration the neighborhood struc-
tures. One particularly simple choice that produces good results is
to set wij equal to the inverse of the number of neighbors 1=ji?j
of vertex vi, for each element j of i?. Note that the case of the
Laplacian of a n-periodic signal (1) is a particular case of these
definitions. A more general way of choosing weights for a sur-
face with a first order neighborhood structure, is using a positive
function �(vi; vj) = �(vj; vi) defined on the edges of the surface

wij =
�(vi; vj)P

h2i?
�(vi; vh)

:

For example, the function can be the surface area of the two faces
that share the edge, or some power of the length of the edge
�(vi; vj) = kvi � vjk

�. In our implementation the user can
choose any one of these weighting schemes. They produce similar
results when the surface has faces of roughly uniform size. When
using a power of the length of the edges as weighting function, the
exponent� = �1 produces good results.

If W = (wij) is the matrix of weights, with wij = 0 when
j is not a neighbor of i, the matrix K can now be defined as
A B
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Figure 4: (A) Boundary surface of voxels from a CT scan. (B)
Surface (A) after 10 non-shrinking smoothing steps. (C) Surface
(A) after 50 non-shrinking smoothing steps. (D) Surface (A) after
100 non-shrinking smoothing steps. kPB = 0:1 and � = 0:6307 in
(B), (C), and (D). Surfaces are flat-shaded to enhance the faceting
effect.

K = I � W . In the appendix we show that for a first order
neighborhood structure, and for all the choices of weights described
above, the matrix K has real eigenvalues 0 � k1 � k2 � � � � �
kn � 2 with corresponding linearly independent real unit length
right eigenvectors u1; : : : ; un. Seen as discrete surface signals,
these eigenvectors should be considered as the natural vibration
modes of the surface, and the corresponding eigenvalues as the
associated natural frequencies.

The decomposition of equation (3), of the signal x into a linear
combination of the eigenvectorsu1; : : : ; un, is still valid with these
definitions, but there is no extension of the Fast Fourier Transform
algorithm to compute it. The method of Fourier descriptors – the
exact projection onto the subspace of low frequencies – is just
not longer feasible, particularly for very large surfaces. On the
other hand, low-pass filtering – the approximate projection – can be
formulated in exactly the same way as forn-periodic signals, as the
multiplication of a function f(K) of the matrix K by the original
signal

x0 = f(K)x ;

and this process can be iterated N times

xN = f(K)
N x :

The function of one variable f(k) is the transfer function of the
filter. Although many functions of one variable can be evaluated in
matrices [9], we will only consider polynomials here. For example,
in the case of Gaussian smoothing the transfer function is f(k) =
1� �k. Since for any polynomial transfer function we have

x0 = f(K)x =

nX
i=1

�i f(ki)ui ;

because Kui = kiui , to define a low-pass filter we need to find
a polynomial such that f(ki)N � 1 for low frequencies, and



f(ki)
N � 0 for high frequencies in the region of interest k 2 [0; 2].

Our choice is
f(k) = (1� �k)(1� �k) (7)

where 0 < �, and� is a new negative scale factor such that� < ��.
That is, after we perform the Gaussian smoothing step of equation
(4) with positive scale factor � for all the vertices – the shrinking
step –, we then perform another similar step

x0i = xi + ��xi (8)

for all the vertices, but with negative scale factor � instead of � –
the un-shrinking step –. These steps are illustrated in figure 1.

The graph of the transfer function of equation (7) is illustrated
in figure 2-A. Figure 2-B shows the resulting transfer function after
N iterations of the algorithm, the graph of the function f(k)N .
Since f(0) = 1 and �+ � < 0, there is a positive value of k, the
pass-band frequencykPB, such that f(kPB) = 1. The value of kPB is

kPB =
1

�
+

1

�
> 0 : (9)

The graph of the transfer function f(k)N displays a typical low-
pass filter shape in the region of interest k 2 [0; 2]. The pass-band
region extends from k = 0 to k = kPB, where f(k)N � 1. As k
increases from k = kPB to k = 2, the transfer function decreases to
zero. The faster the transfer function decreases in this region, the
better. The rate of decrease is controlled by the number of iterations
N .

This algorithm is fast (linear both in time and space), extremely
simple to implement, and produces smoothing without shrinkage.
Faster algorithms can be achieved by choosing other polynomial
transfer functions, but the analysis of the filter design problem is
beyond the scope of this paper, and will be treated elsewhere [33].
However, as a rule of thumb, the filter based on the second degree
polynomial transfer function of equation (7) can be designed by first
choosing a values of kPB. Values from 0:01 to 0:1 produce good
results, and all the examples shown in the paper where computed
with kPB � 0:1. Once kPB has been chosen, we have to choose� and
N (� comes out of equation (9) afterwards). Of course we want to
minimize N , the number of iterations. To do so, � must be chosen
as large as possible, while keeping jf(k)j < 1 for kPB < k � 2

(if jf(k)j � 1 in [kPB; 2], the filter will enhance high frequencies
instead of attenuating them). In some of the examples, we have
chosen � so that f(1) = �f(2). For kPB < 1 this choice of �
ensures a stable and fast filter.

Figures 3 and 4 show examples of large surfaces faired with this
algorithm. Figures 3 is a synthetic example, where noise has been
added to one half of a polyhedral approximation of a sphere. Note
that while the algorithm progresses the half without noise does not
change significantly. Figure 4 was constructed from a CT scan of
a spine. The boundary surface of the set of voxels with intensity
value above a certain threshold is used as the input signal. Note
that there is not much difference between the results after 50 and
100 iterations.

3 SUBDIVISION

A subdivision surface is a smooth surface defined as the limit of
a sequence of polyhedral surfaces, where the next surface in the
sequence is constructed from the previous one by a refinement
process. In practice, since the number of faces grows very fast, only
a few levels of subdivision are computed. Once the faces are smaller
than the resolution of the display, it is not necessary to continue. As
Welch and Witkin [38], we are not interested in the limit surfaces,
but rather in using subdivision and smoothing steps as tools to design
fair polyhedral surfaces in an interactive environment. The classical
A

B
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D

Figure 5: Surfaces created alternating subdivision and different
smoothing steps. (A) Skeleton surface. (B) One Gaussian smooth-
ing step (� = 0:5). Note the hexagonal symmetry becauseof insuf-
ficient smoothing. (C) Five Gaussian smoothing steps (� = 0:5).
Note the shrinkage effect. (D) Five non-shrinking smoothing steps
(kPB = 0:1 and � = 0:6307) of this paper. (B),(C), and (D) are
the surfaces obtained after two levels of refinement and smoothing.
Surfaces are flat-shaded to enhance the faceting effect.

subdivision schemes [8, 4, 12] are rigid, in the sense that they have
no free parameters that influence the behavior of the algorithm as
it progresses trough the subdivision process. By using our fairing
algorithm in conjunction with subdivision steps, we achieve more
flexibility in the design process. In this way our fairing algorithm
can be seen as a complement of the existing subdivision strategies.

In the subdivision surfaces of Catmull and Clark [4, 12] and
Loop [18, 6], the subdivision process involves two steps. A re-
finement step, where a new surface with more vertices and faces is
created, and a smoothing step, where the vertices of the new sur-



face are moved. The Catmull and Clark refinement process creates
polyhedral surfaces with quadrilateral faces, and Loop refinement
process subdivides each triangular face into four similar triangular
faces. In both cases the smoothing step can be described by equa-
tion (4). The weights are chosen to ensure tangent or curvature
continuity of the limit surface.

These subdivision surfaces have the problem of shrinkage,
though. The limit surface is significantly smaller overall than the
initial skeleton mesh – the first surface of the sequence –. This is so
because the smoothing step is essentially Gaussian smoothing, and
as we have pointed out, Gaussian smoothing produces shrinkage.
Because of the refinement steps, the surfaces do not collapse to the
centroid of the initial skeleton, but the shrinkage effect can be quite
significant.

The problem of shrinkage can be solved by a global operation.
If the amount of shrinkage can be predicted in closed form, the
skeleton surface can be expanded before the subdivision process is
applied. This is what Halstead, Kass, and DeRose [12] do. They
show how to modify the skeleton mesh so that the subdivision sur-
face associated with the modified skeleton interpolates the vertices
of the original skeleton.

The subdivision surfaces of Halstead, Kass, and DeRose in-
terpolate the vertices of the original skeleton, and are curvature
continuous. However, they show a significant high curvature con-
tent, even when the original skeleton mesh does not have such
undulations. The shrinkage problem is solved, but a new problem
is introduced. Their solution to this second problem is to stop the
subdivision process after a certain number of steps, and fair the
resulting polyhedral surface based on a variational approach. Their
fairness norm minimization procedure reduces to the solution of a
large sparse linear system, and they report quadratic running times.
The result of this modified algorithm is no longer a curvature con-
tinuous surface that interpolates the vertices of the skeleton, but a
more detailed fair polyhedral surface that usually does not interpo-
late the vertices of the skeleton unless the interpolatory constraints
are imposed during the fairing process.

We argue that the source of the unwanted undulations in the
Catmull-Clark surface generated from the modified skeleton is the
smoothing step of the subdivision process. Only one Gaussian
smoothing step does not produce enough smoothing, i.e., it does
not produce sufficient attenuation of the high frequency compo-
nents of the surfaces, and these high frequency components persist
during the subdivision process. Figure 5-B shows an example of
a subdivision surface created with the triangular refinement step
of Loop, and one Gaussian smoothing step of equation (4). The
hexagonal symmetry of the skeleton remains during the subdivision
process. Figure 5-C shows the same example, but where five Gauss-
ian smoothing steps are performed after each refinement step. The
hexagonal symmetry has been removed at the expense of significant
shrinkage effect. Figure 5-D shows the same example where the
five non-shrinking fairing steps are performed after each refinement
step. Neither hexagonal symmetry nor shrinkage can be observed.

4 CONSTRAINTS

Although surfaces created by a sequence of subdivision and smooth-
ing steps based on our fairing algorithm do not shrink much, they
usually do not interpolate the vertices of the original skeleton. In
this section we show that by modifying the neighborhood structure
certain kind of constraints can be imposed without any modification
of the algorithm. Then we study other constraints that require minor
modifications.

4.1 INTERPOLATORY CONSTRAINTS
A B C D

Figure 6: Example of surfaces designed using subdivision and
smoothing steps with one interpolatory constraint. (A) Skeleton.
(B) Surface (A) after two levels of subdivision and smoothing with-
out constraints. (C) Same as (B) but with non-smooth interpolatory
constraint. (D) Same as (B) but with smooth interpolatory con-
straint. Surfaces are flat-shaded to enhance the faceting effect.

As we mentioned in section 2.2, a simple way to introduce interpola-
tory constraints in our fairing algorithm is by using non-symmetric
neighborhoodstructures. If no other vertex is a neighbor of a certain
vertex v1, i.e., if the neighborhood of v1 is empty, then the value x1
of any discrete surface signal x does not change during the fairing
process, because the discrete Laplacian �x1 is equal to zero by
definition of empty sum. Other vertices are allowed to have v1 as
a neighbor, though. Figure 6-A shows a skeleton surface. Figure
6-B shows the surface generated after two levels of refinement and
smoothing using our fairing algorithm without constraints, i.e., with
symmetric first-order neighborhoods. Although the surface has not
shrunk overall, the nose has been flattened quite significantly. This
is so because the nose is made of very few faces in the skeleton, and
these faces meet at very sharp angles. Figure 6-C shows the result
of applying the same steps, but defining the neighborhood of the
vertex at the tip of the nose to be empty. The other neighborhoods
are not modified. Now the vertex satisfies the constraint – it has
not moved at all during the fairing process –, but the surface has
lost its smoothness at the vertex. This might be the desired effect,
but if it is not, instead of the neighborhoods, we have to modify the
algorithm.

4.2 SMOOTH INTERPOLATION

We look at the desired constrained smooth signal xNC as a sum of
the corresponding unconstrained smooth signal xN = F x after N
steps of our fairing algorithm (i.e. F = f(K)

N), plus a smooth
deformation d1

xNC = xN + (x1 � xN1 )d1 :

The deformation d1 is itself another discrete surface signal, and the
constraint (xNC )1 = x1 is satisfied if (d1)1 = 1. To construct such
a smooth deformation we consider the signal �1, where

(�i)j =
n
1 j = i
0 j 6= i

:

This is not a smooth signal, but we can apply the fairing algorithm
to it. The result, let us denote it Fn1, the first column of the matrix
F , is a smooth signal, but its value at the vertex v1 is not equal to
one. However, since the matrixF is diagonally dominated,F11, the
first element of its first column, must be non-zero. Therefore, we
can scale the signal Fn1 to make it satisfy the constraint, obtaining
the desired smooth deformation

d1 = Fn1F
�1
11 :
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Figure 7: Examples of using subdivision and smoothing with
smooth interpolatory constraints as a design tool. All the sur-
faces have been obtained by applying two levels of subdivision and
smoothing with various parameters to the skeleton surface of figure
5-A . Constrained vertices are marked with red dots. Surfaces are
flat-shaded to enhance the faceting effect.

Figure 6-D shows the result of applying this process.
When more than one interpolatory constraint must be imposed,

the problem is slightly more complicated. For simplicity, we
will assume that the vertices have been reordered so that the in-
terpolatory constraints are imposed on the first m vertices, i.e.,
(xNC )1 = x1; : : : ; (x

N
C )m = xm. We now look at the non-smooth

signals �1; : : : ; �m, and at the corresponding faired signals, the first
m columns of the matrix F . These signals are smooth, and so, any
linear combination of them is also a smooth signal. Furthermore,
sinceF is non-singular and diagonally dominated, these signals are
linearly independent, and there exists a linear combination of them
that satisfies the m desired constraints. Explicitly, the constrained
smooth signal can be computed as follows

xNC = xN + Fnm F�1mm

0
@ x1 � xN1

...
xm � xNm

1
A ; (10)

where Frs denotes the sub-matrix of F determined by the first r
rows and the first s columns. Figure 7 shows examples of surfaces
constructed using subdivision and smoothing steps and interpolating
some vertices of the skeleton using this method. The parameter of
the fairing algorithm have been modified to achieve different effects,
including shrinkage.

To minimize storage requirements, particularly whenn is large,
and assuming that m is much smaller than n, the computation
can be structured as follows. The fairing algorithm is applied to
�1 obtaining the first column F�1 of the matrix F . The first m
elements of this vector are stored as the first column of the matrix
Fmm. The remaining m� n elements of F�1 are discarded. The
same process is repeated for �2; : : : ; �m, obtaining the remaining
columns of Fmm . Then the following linear system

Fmm

0
@ y1

...
ym

1
A =

0
@ x1 � xN1

...
xm � xNm

1
A

is solved. The matrixFmm is no longerneeded. Then the remaining
components of the signal y are set to zero ym+1 = � � � = yn = 0.
Now the fairing algorithm is applied to the signal y. The result
is the smooth deformation that makes the unconstrained smooth
signal xN satisfy the constraints

xNC = xN + F y :

4.3 SMOOTH DEFORMATIONS

Note that in the constrained fairing algorithm described above the
fact that the values of the signal at the vertices of interest are
constrained to remain constant can be trivially generalized to allow
for arbitrary smooth deformations of a surface. To do so, the values
x1; : : : ; xm in equation (10) must be replaced by the desired final
values of the faired signal at the corresponding vertices. As in in the
Free-form deformation approaches of Hsu, Hughes, and Kaufman
[14] and Borrel [3], instead of moving control points outside the
surface, surfaces can be deformed here by pulling one or more
vertices.

Also note that the scope of the deformation can be controlled by
changing the number of smoothing steps applied while smoothing
the signals �1; : : : ; �n. To make the resulting signal satisfy the
constraint, the value of N in the definition of the matrix F must
be the one used to smooth the deformations. We have observed
that good results are obtained when the number of iterations used to
smooth the deformations is about five times the number used to fair
the original shape. The examples in figure 7 have been generated
in this way.

4.4 HIERARCHICAL CONSTRAINTS

This is another application of non-symmetric neighborhoods. We
start by assigning a numeric label li to each vertex of the surface.
Then we define the neighborhood structure as follows. We make
vertex vj a neighbor of vertex vi if vi and vj share an edge (or
face), and if li � lj . Note that if vj is a neighbor of vi and
li < lj , then vi is not a neighbor of vj . The symmetry applies only
to vertices with the same label. For example, if we assign label
li = 1 to all the boundary vertices of a surface with boundary, and
label li = 0 to all the internal vertices, then the boundary is faired
as a curve, independently of the interior vertices, but the interior
vertices follow the boundary vertices. If we also assign label li = 1

to a closed curve composed of internal edges of the surface, then
the resulting surface will be smooth along, and on both sides of
the curve, but not necessarily across the curve. Figure 8-D shows
examples of subdivision surface designed using this procedure. If
we also assign label li = 2 to some isolated points along the curves,
then those vertices will in fact not move, because they will have
empty neighborhoods.

4.5 TANGENT PLANE CONSTRAINTS

Although the normal vector to a polyhedral surface is not defined
at a vertex, it is customary to define it by averaging some local
information, say for shading purposes. When the signal x in equa-
tion (6) is replaced by the coordinates of the vertices, the Laplacian
becomes a vector

�vi =
X
j2i?

wij (vj � vi) :
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Figure 8: (A) Skeleton with marked vertices. (B) Surface (A) after
three levels of subdivision and smoothing without constraints. (C)
Same as (B) but with empty neighborhoods of marked vertices. (D)
Same as (B) but with hierarchical neighborhoods, where marked
vertices have label 1 and unmarked vertices have label 0. Surfaces
are flat-shaded to enhance the faceting effect.

This vector average can be seen as a discrete approximation of the
following curvilinear integral

1

jj

Z
v2

(v� vi) dl(v) ;

where  is a closed curve embedded in the surface which encircles
the vertex vi, and jj is the length of the curve. It is known that, for
a curvature continuous surface, if the curve  is let to shrink to to
the point vi, the integral converges to the mean curvature ��(vi) of
the surface at the point vi times the normal vector Ni at the same
point [7]

lim
�!0

1

j�j

Z
v2�

(v� vi)dl(v) = ��(vi)Ni :

Because of this fact, we can define the vector �vi as the normal
vector to the polyhedral surface at vi. If Ni is the desired normal
direction at vertex vi after the fairing process, and Si and Ti are
two linearly independent vectors tangent to Ni, The surface after
N iterations of the fairing algorithm will satisfy the desired normal
constraint at the vertex vi it the following two linear constraints

Sti�vNi = T t
i�vNi = 0

are satisfied. This leads us to the problem of fairing with general
linear constraints.

4.6 GENERAL LINEAR CONSTRAINTS

We consider here the problem of fairing a discrete surface signal x
under general linear constraintsCxNC = c, whereC is a m�nma-
trix of rank m (m independent constraints), and c = (c1; : : : ; cm)

t

is a vector. The method described in section 4.1 to impose smooth
interpolatory constraints, is a particular case of this problem, where
the matrix C is equal the upper m rows of the m � m identity
matrix. Our approach is to reduce the general case to this particular
case.

We start by decomposing the matrix C into two blocks. A first
m�m block denoted C(1) , composed of m columns of C , and a
second block denoted C(2) , composed of the remaining columns.
The columns that constitute C(1) must be chosen so that C(1) be-
come non-singular, and as well conditioned as possible. In practice
this can be done using Gauss elimination with full pivoting [9], but
for the sake of simplicity, we will assume here that C(1) is com-
posed of the first m columns of C . We decompose signals in the
same way. x(1) denotes here the first m components, and x(2) the
last n�m components, of the signal x. We now define a change
of basis in the vector space of discrete surface signals as follows

�
x(1) = y(1) �C�1

(1)
C(2) y(2)

x(2) = y(2)
:

If we apply this change of basis to the constraint equationC(1)x(1)+
C(2)x(2) = c, we obtain C(1)y(1) = c, or equivalently

y(1) = C�1(1) c ;

which is the problem solved in section 4.2.

5 CONCLUSIONS

We have presented a new approach to polyhedral surface fairing
based on signal processing ideas, we have demonstrated how to
use it as an interactive surface design tool. In our view, this new
approach represents a significant improvement over the existing
fairness-norm optimization approaches, because of the linear time
and space complexity of the resulting fairing algorithm.

Our current implementation of these ideas is a surface modeler
that runs at interactive speeds on a IBM RS/6000 class workstation
under X-Windows. In this surface modeler we have integrated
all the techniques described in this paper and many other popular
polyhedral surface manipulation techniques. Among other things,
the user can interactively define neighborhood structures, select
vertices or edges to impose constraints, subdivide the surfaces, and
apply the fairing algorithm with different parameter values. All the
illustrations of this paper where generated with this software.

In terms of future work, we plan to investigate how this approach
can be extended to provide alternatives solutions for other impor-
tant graphics and modeling problems that are usually formulated
as variational problems, such as surface reconstruction or surface
fitting problems solved with physics-based deformable models.

Some related papers [31, 32] can be retrieved from the IBM
web server (http://www.watson.ibm.com:8080).
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APPENDIX

We first analyze those cases where the matrix W can be factorized as a
product of a symmetric matrix E times a diagonal matrix D. Such is the
case for the first order neighborhood of a shape with equal weights wij =
1=ji?j in each neighborhood i?. In this case E is the matrix whose ij-th.
element is equal to 1 if vertices vi and vj are neighbors, and 0 otherwise,
and D is the diagonal matrix whose i-th. diagonal element is 1=ji?j.
Since in this case W is a normal matrix [9], because D1=2WD�1=2 =

D1=2ED1=2 is symmetric, W has all real eigenvalues, and sets of n
left and right eigenvectors that form respective bases of n-dimensional
space. Furthermore, by construction, W is also a stochastic matrix, a
matrix with nonnegative elements and rows that add up to one [27]. The
eigenvalues of a stochastic matrix are bounded above in magnitude by 1,
which is the largest magnitude eigenvalue. It follows that the eigenvalues
of the matrix K are real, bounded below by 0, and above by 2. Let
0 � k1 � k2 � � � � � kn � 2 be the eigenvalues of the matrixK, and let
u1; u2; : : : ; un a set of linearly independent unit length right eigenvectors
associated with them.

When the neighborhood structure is not symmetric, the eigenvaluesand
eigenvectors of W might not be real, but as long as the eigenvalues are not
repeated, the decomposition of equation (3), and the analysis that follows,
are still valid. However, the behavior of our fairing algorithm in this case
will depend on the distribution of eigenvalues in the complex plane. The
matrix W is still stochastic here, and so all the eigenvalues lie on a unit
circle jki�1j < 1. If all the eigenvaluesofW are very close to the real line,
the behavior of the fairing algorithm should be essentially the same as in the
symmetric case. This seems to be the case when very few neighborhoods
are made non-symmetric. But in general, the problem has to be analyzed
on a case by case basis.


