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Abstract

For a number of computational purposes, including
visualization of scientific data and registration of mul-
timodal medical data, smooth curves must be approxi-
mated by polygonal curves, and surfaces by polyhedral
surfaces. An inherent problem of these approximation
algorithms is that the resulting curves and surfaces ap-
pear faceted. Boundary-following and iso-surface con-
struction algorithms are typical examples. To reduce the
apparent faceting, smoothing methods are used. In this
paper we introduce a new method for smoothing piece-
wise linear shapes of arbitrary dimension and topology.
This new method is in fact a linear low-pass filter that
removes high curvature variations, and does not pro-
duce shrinkage. Its computational complexity is linear
in the number of edges or faces of the shape, and the
required storage is linear in the number of vertices.
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1 Introduction

In this paper, curves and surfaces will be referred to
as shapes, and polygonal curves and polyhedral surfaces
will be referred to as piece-wise linear shapes, respectively.

SR I L
N

Figure 1: (A) Abinary image. (B) Theboundary curve of

(A) appears faceted. (C) The result of applying Gauss-
ian smoothing to (B). (D) The result of applying the
smoothing method of this article to (B).
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Figure 2: (A) A surface constructed with an iso-surface
construction algorithm appears faceted. (B) The result
of applying Gaussian smoothing to (A). (C) The result
of applying the smoothing method of this article to (A).
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Figure 3: (A) A surface constructed with an iso-surface
construction algorithm appears faceted. (B) The result
of applying Gaussian smoothing to (A). (C) The result
of applying the smoothing method of this article to (A).

Most existing geometric smoothing methods suffer
from a number of problems. Perhaps the most impor-
tant one is the shrinkage problem: when the smoothing
method is applied iteratively a large number of times,
a shape eventually collapses to a point.

Smoothing polygonal curves is simpler than smooth-
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ing polyhedral surfaces because curves have an intrin-
sic linear ordering which allows for the application of
Fourier analysis. The so-called Fourier descriptors, the
use of the coefficients in a Fourier series expansion
of the tangent-angle versus arc-length description of
a curve, provide a multi-resolution representation of
continuous curves. To smooth a polygonal curve it is
sufficient to truncate the Discrete Fourier Transforms of
its coordinates, which are looked upon as discrete peri-
odic signals. Fourier descriptors date back to the early
1960’s [18], and have been widely used since then in the
computer vision literature as multi-resolution shape de-
scriptors for object recognition. The method of Fourier
descriptors does not produce shrinkage, but neverthe-
less, it does have two important problems. First, it is
computationally expensive. Even using the Fast Fourier
Transform algorithm, the number of arithmetic opera-
tions is of the order of nlog(n), where n is the number
of vertices. Linear algorithms, those which require in
the order of n arithmetic operations, are more desirable,
particularly for surfaces, where the number of vertices
is large. The second problem is that it does not extend
to surfaces of arbitrary topological type.

Perhaps the most popular linear technique of geo-
metric smoothing parameterized curves is the so-called
Gaussian smoothing method, associated with scale-space
theory [17]. In the continuous case, Gaussian smooth-
ing is performed by convolving the vector function that
parameterizes the curve with a Gaussian kernel. In
section 2 we show how to define Gaussian smooth-
ing on polyhedral surfaces of arbitrary topology. It is
well known though, that Gaussian smoothing produces
shrinkage. Some heuristic solutions to this problem
have been proposed [6, 9], and more recently Oliensis
[10] Oliensis pointed out that Gaussian smoothing pro-
duces shrinkage because the convolution with a Gauss-
ian kernel is not a low-pass filter operation. Except for
the zero frequency, all the frequencies are attenuated.
To prevent shrinkage, the smoothing algorithm must
produce a low-pass filter effect. However, Oliensis’ so-
lution, based on Fourier analysis and formulated for the
continuous case, only extends to images, not to surfaces
of arbitrary topological type.

Lindeberg [8] formulated a scale-space theory for
closed polygonal curves. Within this framework Gauss-
ian smoothing becomes a discrete convolution of the
vertex coordinates with a discrete approximation of a
Gaussian kernel. Lindeberg’s smoothing method also
produces shrinkage. The analysis techniques of section
4 generalize Lindeberg'’s analysis to general piece-wise
linear shapes of arbitrary dimension and topology.

2 Gaussian Smoothing

In the Gaussian smoothing method the new position
of each vertex is computed as a weighted average of
the current positions of the vertex itself, and its first
order neighbors, those vertices that share an edge (or

face) with the current vertex. This process is repeated
a number of times. The Gaussian smoothing method
has a number of advantages with respect to the existing
methods discussed above, but still produces shrinkage.
The first advantage is that it applies to piece-wise lin-
ear surfaces of arbitrary topological type, not only those
that can be parameterized by functions defined on a rec-
tangular domain. The second advantage is that, since
first order neighbors are defined implicitly in the list
of edges or faces of the curve or surface, no storage is
required to encode the neighborhood structures. The
third advantage is that the number of operations is a
linear function of the total number of vertices, edges,
and faces. However, since the method is very local,
to obtain a long range smoothing effect, the Gaussian
smoothing methods has to be applied iteratively a large
number of times, producing significant shrinkage as a
by-product. Figures 1,2, and 3 illustrate the problem of
shrinkage that the Gaussian smoothing method shares
with most existing geometric smoothing algorithms.

The main innovation of the method introduced in
this article is how to modify the Gaussian smoothing
method to prevent shrinkage, obtaining a simple and
general method to smooth general and arbitrary polyg-
onal curves and polyhedral surfaces that has all the
good properties of the other methods described above,
but none of their disadvantages.

In the rest of this section we first discuss how to rep-
resent piece-wise linear shapes as lists of vertices and
edges, or vertices and faces. Then we define what we
mean by a neighborhood of a vertex, and by a neighborhood
structure of a shape. Finally, we describe the Gaussian
smoothing algorithm in detail.

A closed polygon in two or three dimensions is usu-
ally represented as an ordered list of vertices V = {v; :
1 <4 < ny}, with v = (24, %) or vi = (i, %, 2)
depending on whether the curve is two or three di-
mensional. No more information is needed because
curves have an intrinsic linear order. But for an open
curve or a curve composed of several connected com-
ponents, it is desirable to represent it as a pair of lists
C = {V,E}, a list of vertices V and a list of edges
E = {ex : 1 < k < ng}, with each edge e; = (i,1%)
being a pair of non-repeated indices of vertices. A sur-
face is usually represented as a pair of lists § = {V, F},
a list of vertices V = {v; : 1 < i < ny}, and a list
of faces F = {fi : 1 < k < np}, with each face
fe = (if,...,i, ) being a sequence of non-repeated
indices of vertices, and representing itself a closed three
dimensional polygon, not necessarily flat. In some
cases, the number of vertices ny, varies from face to
face, while in others all the faces have the same number
of vertices. Triangulated surfaces are the most common,
where all the faces are triangles fi = (i, i, %). There
are other popular representations for piece-wise linear
shapes [2], but those just described are the most appro-
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priate for our algorithm.

A neighborhood of a vertex v; is a set +* of indices of
vertices. If the index j belongs to the neighborhood &*,
we say that v; is a neighbor of v;. No vertex is allowed to
be a neighbor of itself, but otherwise no further restric-
tions are imposed on the neighborhoods. In particular,
it is permitted that a vertex v; be a neighbor of vertex
v; without vertex v; being a neighbor of vertex v;. A
neighborhood structure is symmetric if the situation just
described never happens, i.e., every time that a vertex
v; is a neighbor of vertex v;, also v; is a neighbor of v;.
The neighborhood structure of a shape is defined as the
family of all the neighborhoods {¢* : i = 1,2,...,nv}.
A particularly important neighborhood structure is the
first order neighborhood structure, where for each pair
of vertices v; and v; that share an edge (or face), we
make v; a neighbor of v;, and v; a neighbor of v;. For
example, for a polygonal curve represented just by a list
of consecutive vertices, the first order neighborhood of
avertex v; is #* = {i—1, 1+ 1}. The first order neighbor-
hood structure is symmetric, and since it is implicitly
represented in the list of vertices, edges, or faces of the
shape, no extra storage is required to represent it.

In the Gaussian smoothing algorithm the position
of each vertex is replaced by a convex combination of
the positions of itself and its neighbors. Alternatively,
Gaussian smoothing can also be reformulated as fol-
lows. First, for each vertex v;, a vector average

Av; = Z wij (v; — v4)

je

is computed as a weighted average of the vectors v; —v;,
that extend from the current vertex v; to a neighbor ver-
tex v;. For each vertex v; the weights w;; are positive
and add up to one, but otherwise they can be cho-
sen in many different ways taking into consideration
the neighborhood structures. One particularly simple
choice that produces good results is to set w;; equal to
the inverse of the number of neighbors 1/|i*| of vertex
v;, for each element j of *. Once all the vector aver-
ages are computed, the vertices are updated by adding
to each vertex current position v; its corresponding dis-
placement vector
v = v; + Ay,

computed as the product of the vector average Av; and
the scale factor A, obtaining the new position v]. The
scale factor, which can be a common value for all the
vertices or be vertex dependent, is a positive number
0<A<l.

The advantage of the Gaussian smoothing method is
that it produces geometric smoothing. The main dis-
advantage is that to produce significant smoothing, the
Gaussian smoothing algorithm must be applied itera-
tively a large number of times using first order neigh-
borhoods. However, by doing so a significant shrinkage
effect is also introduced.
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3 The New Algorithm

The smoothing algorithm introduced in this article
consists of two consecutive Gaussian smoothing steps.
After a first Gaussian smoothing step with a positive
scale factor ) is applied to all the vertices of the shape,
a second Gaussian smoothing step is applied to all the
vertices, but with a negative scale factor u, greater in
magnitude than the first scale factor (0 < A < —u). To
produce a significant smoothing effect, these two steps
must be repeated, alternating the positive and negative
scale factors, a number of times.

In fact this method produces a low pass filter effect,
where curve or surface curvature takes the place of fre-
quency. The original non-smooth curve or surface is
modeled as an underlying smooth curve or surface,
plus a normal perturbation vector field. The underlying
curve or surface is bounded above in curvature, and the
perturbation that needs to be filtered out is regarded as
zero mean high curvature noise. The two scale factors
determine the pass-band and stop-band curvatures. For
higher attenuation in the stop-band, the two Gaussian
smoothing steps must be repeated alternating the two
scale factors A and u. The amount of attenuation is then
determined by the number of iterations N.

Figures 4, 5, and 6 show more examples of apply-
ing this new smoothing algorithm to large piece-wise
surfaces extracted from volumetric data.

4 Why the New Algorithm Works

In this section we show why the algorithm described
in the previous section produces a low-pass filter effect.
In the next section we show how to design the low pass-
filter, i.e., how to determine the two scale factors A and
u, and the number of iterations N, as functions of the
low-pass filter parameters.

For a two-dimensional shape, let X be the ny x2 ma-
trix with i-th. row equal to the coordinates (z;, %) of the
current position of vertex v;. For a three-dimensional
shape, let X be the ny x 3 matrix with i-th. row equal
to the coordinates (z;, ¥i, z;) of the current position of
vertex v;. Let X’ and X" be matrices constructed in
the same way, but with the coordinates of the first and
second positions of the vertices, respectively. And let
X¥ be yet another matrix constructed in the same way,
but with the coordinates of the vertices when the algo-
rithm stops, after N iterations. The relation between
the matrices X and X’ can be described in matrix form
as

X' =(I-)K)X,

where A is the first scale factor, K is the square ny xny
matrix K = I — W, I is the ny x ny identity matrix,
and W is the square ny X ny matrix of weights {w;; :
i,j = 1,2,...,ny}, with the convention that weight w;;
is equal to 0 if vertex v; is not a neighbor of vertex v;.
Similarly, the relation between the matrices X’ and X"
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Figure 4: (A) A very irregular polyhedral surface com-
puted as the boundary of a set of volume elements.
The result of applying 30 steps (B), 60 steps (C), and 90
steps (D) of the smoothing method of this article to A
with parameters A = 0.33 and g = —0.34 (see text for
explanation of parameters).

Figure 5: Smoothing piece-wise linear surfaces created
by a good iso-surface construction algorithm. (A) Iso-
surface constructed with Kalvin’s Alligator algorithm
[7] from CT data (74,760 vertices, 149,776 faces). The
result of applying 30 steps (B), and 100 steps (C), of
the smoothing method of this article to A with parame-
ters A = 0.33 and pu = —0.34 (see text for explanation
of parameters). Note the faceting in A near the teeth
produced by the greater separation between slices, has
disappeared in C

can be described in matrix form as
X'=(I-uK)X,

where 4 is the second scale factor, and K is the same
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Figure 6: Smoothing simplified piece-wise linear sur-
faces. (A) Simplified iso-surface constructed with
Guéziec’s Wrapper algorithm [5, 4] from CT data (27,367
vertices, 55,310 faces). The result of applying 30 steps
(B), and 60 steps (C), of the smoothing method of this
article to A with parameters A = 0.330 and p = —0.331
(see text for explanation of parameters).

matrix described above. Finally, since the matrices I —
AK and I — uK commute with each other, the relation
between the position of the vertices before and after N
iterations can be expressed in matrix form as

XY = (1 -uK)I -2V X .

Although the method applies to general neighbor-
hood structures, we will restrict our analysis here to
those cases where the matrix W can be factorized as a
product of a symmetric matrix E times a diagonal ma-
trix D. Such is the case for the first order neighborhood
a shape with equal weights w;; = 1/|¢*| in each neigh-
borhood #*. In this case E is the matrix whose ;-th.
element is equal to 1 if vertices v; and v; are neighbors,
and 0 otherwise, and D is the diagonal matrix whose
i-th. diagonal element is 1/|¢*| (the incidence matrix of
the neighborhood). The study of shapes with more gen-
eral neighborhood structures is beyond the scope of this
paper, and will be carried out in detail in a forthcoming
article.

Since the matrix DY/2W D-1/2 = DY/2ED/? is sym-
metric, W is a so-called normal matrix [3], which has all
real eigenvalues, and sets of ny left and right eigen-
vectors that form respective bases of ny-dimensional
space. Furthermore, by construction, W is also a sto-
chastic matrix, a matrix with nonnegative elements and
rows that add up to one [12]. The eigenvalues of a sto-
chastic matrix are bounded above in magnitude by 1,
which is the largest magnitude eigenvalue. It follows
that the eigenvalues of the matrix K are real, bounded
below by 0, and above by 2 (but typically the greatest
eigenvalue of K is significantly smaller than 2). Let
0 <k <kz<:-- <kny, <2 be the eigenvalues of the
matrix K, and let f(k) be the polynomial of one variable
k defined by

F(6) = (1= AR)(L - k). M



Polynomials of one variable can be evaluated in square

matrices. In particular the matrix ((I — uK)(I — AK ))N
can be written as the evaluation f(K)V of the poly-
nomial f(k)¥ in the matrix K. If uj,u3,...,un, is
a set of linearly independent unit length right eigen-
vectors of the matrix K associated with the eigen-
values ky, ks, .. ., kn,,, respectively, then uy, ug, ..., un,
are also right eigenvectors of the matrix f)SK )V, with
associated eigenvalues f(k1)¥,..., f(kn,)¥. Further-
more, since uj,ug,...,Un, constitute a basis of ny-
dimensional space, each column vector z of the matrix
X (the vectors of first, second, or third coordinates of
the vertices), and in fact any ny -dimensional vector «,
can be written in a unique way as a linear combination
of the basis vectors

@

where {3, ...,£,, are constants. Thus, after applying
the smoothing algorithm, we obtain

FEY 2 = (G f(k)Y ) ur -+ (Eny F(ka)V ) tny - (3)

Seen as scalar functions defined on the vertices of
the shape, the eigenvectors of the matrix K can be con-
sidered as the main free vibration modes, and the cor-
responding eigenvalues as the associated natural fre-
quencies. There is some similarity here with the modal
analysis of Pentland and Sclaroff [11], in the sense that
eigenvectors of certain matrices are seen as vibrations
modes and the corresponding eigenvalues as natural
frequencies, but the similarity ends up here. The matri-
ces are constructed in very different ways. This is also a
generalization of traditional Discrete Fourier analysis.
For example, if the shape is a closed polygon, where
each vertex has exactly two neighbors, the matrix K
turns out to be a circulant matrix, whose eigenvectors
are the columns of the Fourier matrix [1]. Computing
the coefficients £, . . ., é»,, of equation (2) is nothing but
computing the Discrete Fourier Transform of z.

We only have to make sure now that in equation (3),
only the terms associated with low frequencies remain
after N iterations. That is, f(k;)" mustbe very close to
1 for a low frequency k; and large N, and f(k;)¥ must
be close to 0 for a high frequency k; and large N.

Figure 7 is a diagram that shows the graph of the
polynomial f(k), and Figure 8 is a diagram that shows
the transfer function of the algorithm, the graph of the
function f(k)¥. The graph of the polynomial f(k) is
an inverted parabola with roots at k¥ = 1/A > 0 and
E = 1/p < 0. The value of the polynomial f(k) is
positive for 1/u < k < 1/}, and negative for k < 1/u
and k > 1/). Furthermore, since f(0) = 1and u+X < 0,
there is a positive value of k, let us denote it ky; (the pass-
band frequency), such that f(ks) = 1. The value of k.,

18 1 1
ks=—+—>0.
A

c=8ur+-+&ny Uny ,
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Figure 7: Graph of the polynomial f(k) = (1 - Ak)(1 -
k).
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Figure 8: Graph of the transfer function f(k)V.

The graph of the transfer function f(k) displays a
typical low-pass filter shape in the region of interest, i.e.,
from k = 0 to k = 2. The pass-band region extends from
k = 0tok = ke For values of k in the pass-band
region, f(k)¥ = 1. The transition region extends from
k = ke to k = ks, (the stop-band frequency), where kg is a
parameter defined by the user, that will be discussed in
detail in the next section. The stop-band region extends
from k = kg tok = 1/, For values of k in the stop-band
region, f(k)" ~ 0 for large N.

5 Filter design

The low-pass filter parameters are the pass-band fre-
quency kg, the pass-band ripple 6z, the stop-band fre-
quency kg, and the stop-band ripple 65, shown in Fig-
ure 8. To design the low-pass filter we have to show
how to determine the first scale factor A, the second
scale factor y, and the number of iterations N as func-
tions of the low-pass filter parameters.

We can observe in Figure 8, that the low-pass filter
parameters must satisfy the following inequalities

0<bkpp<ks<2,0<bp0<b5<1.

)

From the discussion above, we also know that the first
scale factor J, the second scale factor p, and the number



of iterations N, must satisfy the following equations
and inequalities

1 1 1
— 4 ==ky.
ksa A © PB ()

O0<N,0<A<—pu, A<
There are two more inequalities that must be satisfied
to design the low-pass filter:

(=) < 146n  (6)
(L= Aks)(1 - l‘kse))N < by . )

The values of the first scale factor ), the second scale
factor i, and the number of iterations N, are computed
as a solution of the system of equations and inequalities
(5)-(6)-(7)-

Since there are three free variables (), 4, and N), and
four parameters (kps, ks, 65, and &), the system might
have no solution. That is the case if we push the stop-
band frequency very close to the pass-band frequency,
or if we set the two ripples very tight. But the system
might have more than one solution, in which case we
must choose the one corresponding to the minimum
number of iterations N to minimize computation time.

6 Conclusion

In this paper we have introduced a method for
smoothing piece-wise linear shapes of arbitrary dimen-
sion and topology, that generalizes Gaussian smooth-
ing but prevents shrinkage. We have shown that the
method produces a low-pass filter effect as a function
of the natural frequencies of the shape. The method
is efficient both in terms of computational complexity,
and in terms of storage requirements. The complexity is
linear in the number of edges or faces of the shape, and
the storage required is a linear function of the vertices.
The method has immediate application to improve a
number of computational procedures, including visual-
ization of scientific data and registration of multimodal
medical data.

A longer version of this paper [13], as well as other
related papers [15, 16], can be retrieved as PostScript
files from the IBM Research World Wide Web server
(http://www.watson.ibm.com:8080).
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