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Klein bottle for rent – inquire within.

— Anonymous

2 Surface Topology

Last lecture, we spent a considerable amount of effort definingmanifolds. We like manifolds because they are locally
Euclidean. So, even though it is hard for us to reason about them globally, we know what to do in small neighborhoods.
It turns out that this ability is all we really need. This is rather fortunate, because we suddenly have spaces with more
interesting structure than the Euclidean spaces to study.

Recall that topology, like Euclidean geometry, is a study of the properties of spaces that remain invariant (do not
change) under a fixed set of transformations. In topology, we expand the transformations that are allowed from rigid
motions (Euclidean geometry) tohomeomorphisms: bijective bi-continuous maps. In this lecture, we ask whether
we may classify manifolds under this set of transformations, and we see that such a classification is possible for
two-dimensional manifolds orsurfaces.

2.1 Topological Type

To begin with, we should indicate what we mean by aclassification. This notion has a nice mathematical definition,
which you may have seen in high school.

Definition 2.1 (partition) A partition of a setis a decomposition of the set into subsets (cells) such that every element
of the set is in one and only one of the subsets.

We wish to partition the set of manifolds according to their connectivity. We are forced to look at different partitioning
schemes in our search for one which is computationally feasible. Each scheme depends on an equivalence relation.

Definition 2.2 (equivalence)Let S be a nonempty set and let∼ be a relation between elements ofS that satisfies the
following properties for alla, b, c ∈ S:

1. (Reflexive)a ∼ a.

2. (Symmetric) Ifa ∼ b, thenb ∼ a.

3. (Transitive) Ifa ∼ b andb ∼ c, a ∼ c.

Then, the relation∼ is anequivalence relationonS.

It is clear from the definition of homeomorphism that it is an equivalence relation. The following theorem allows us
to derive a partition from an equivalence relation.

Theorem 2.1 LetS be a nonempty set and let∼ be an equivalence relation onS. Then,∼ yields a natural partition
of S, whereā = {x ∈ S | x ∼ a}. ā represents the subset to whicha belongs to. Each cell̄a is anequivalence class.

As homeomorphism is an equivalence relation, we may use it to partition manifolds by this theorem. If two manifolds
are placed in the same subset, they are connected the same way, and we say that they have the sametopological type.
One of the fundamental questions in topology is whether this partition is computable. In this lecture, we focus on the
solution to this problem in two dimensions.

2.2 Basic 2-Manifolds

Before classifying 2-manifolds, however, it would be nice to meet a few of them. In this section, we look at a few
basic 2-manifolds.
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(a){x ∈ R3 | |x| = 1}

v

(b) Identify boundary tov (c) Instructions for a flat sphere

Figure 1. The sphere S2

The sphere. Topologically, the sphereS2 is the simplest surface. We are most comfortable with the implicit surface
definition in Figure1(a), that defines the unit sphere as a subspace ofR3. The sphere may be defined, however, using
a diagram (b), which asks us to make the entire boundary a single point. Thisidentificationgives us a topological
sphere. We may make a sphere out of paper. Paper has no curvature, so it has flat geometry, and we get aflat sphere
(c).

(a) Donut surface
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(b) Diagram (c) Instructions for a flat torus

Figure 2. The torus T2

The torus. The torus is familiar to us as the surface of a bagel or a donut, as shown in Figure2(a). We may describe
a torus as a subspace ofR3 geometrically. For example, atorus of revolutionis created when we sweep a circle around
thez-axis:T (u, v) = ((1+ cos u) cos v, (1+ cos u) sin v, sin(u)). The torus may also be described via a diagram (b),
in which the edges are glued according to their direction of their arrows. Finally, we can build a flat torus (c) easily.

(a) Embedded
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(b) Diagram (c) Escher’sMöbius Strip II(on its side)

Figure 3. The Möbius strip is a non-orientable manifold with boundary.

The Möbius strip. Figure3(a) shows an embedded Möbius strip: a 2-manifold with boundary. It is easy to construct
one by gluing one end of a strip of paper to the other end with a single twist, as shown in the diagram (b). This manifold
is notorientable. The notes for last lecture included a definition of orientability for smooth manifolds in an appendix.
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We will see another formal definition of orientability in the next lecture. For now, orientability means that the surface
has two sides. M. C. Escher establishes that the Möbius strip is one-sided by marching ants on the strip (c). Note that
the boundary of the M̈obius strip is a single cycle. This cycle corresponds to the two unglued edges in the diagram (b)
which we may now glue with or without a twist.
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(a) Diagram (b) Instructions for a flatRP2

Figure 4. The projective plane RP2

The projective plane. If we glue the unglued edges of the Möbius strip with a twist as in Figure4,we get the
projective planeRP2. This action corresponds to gluing the boundary of a disk to the boundary of the Möbius strip.
This manifold has this name because of its association withprojective geometryused in art and computer graphics
for representing what we see on a flat canvas. For example, we know that railway lines never intersect, as they are
parallel. When we look at them in real life, however, we see that they come together at the horizon, or at “infinity”.
They also intersect at horizon behind us. We would like any two lines to intersect at most once, so weidentifythe two
intersecting points as the same point. Imagine the boundary of the diagram in (a) is the horizon. The arrows on the
diagram identify points reflected around the origin, oranti-podalpoints, to get the projective plane. This manifold is
non-orientable, as it contains a Möbius strip. It cannot be embedded inR3, so we have to be content with immersions.
Figure5 shows three famous immersions of the projective plane, all of which self-intersect. We also have to cut paper
to make a flat model.

(a) Cross cap (b) Boy’s Surface (c) Steiner’s Roman Surface

Figure 5. Models of the projective plane RP2

The Klein bottle. If we glue the free edges of the M̈obius strip in the same direction, we get the Klein bottleK2,
as shown in Figure6(a). The Klein bottle is therefore equivalent to gluing two Möbius strips to each other along
their boundary. Like the projective plane, it is a closed non-orientable surface. It is not embeddable inR3, and its
immersions self-intersect (b, c) with the intersecting triangle colored in red. Once again, we need to cut paper in order
to make a flat model (d).
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(a) Diagram (b) An immersion (c) Cut in half (a
Möbius strip)

(d) Instructions for a flatK2

Figure 6. The Klein bottle K2

2.3 Connected Sum

We may use the surfaces we just defined to form larger manifolds. To do this, we form connected sums.

Definition 2.3 (connected sum)Theconnected sumof two n-manifoldsM1, M2 is

M1 # M2 = M1 − D̊n
1

⋃
∂D̊n

1 =∂D̊n
2

M2 − D̊n
2 ,

whereDn
1 , Dn

2 aren-dimensional closed disks inM1, M2, respectively.

In other words, we cut out two disks and glue the manifolds together along the boundary of those disks using a
homeomorphism. In Figure7, for example, we connect two tori to form a sum with twohandles.

=#

Figure 7. The connected sum of two tori is a genus 2 torus.

2.4 The Classification Theorem

We are now able to state a result that gives a complete classification of compact 2-manifolds.

Theorem 2.2 (Classification of Compact 2-Manifolds)Every closed compact surface is homeomorphic to a sphere,
the connected sum of tori, or connected sum of projective planes.

We will see in the next lecture that this classification is easily computable. In the remainder of this lecture, we will
look at Conway’s ZIP proof [2] of this theorem.

The theorem answers the homeomorphism question for manifolds in two dimensions. After learning about groups,
we will see that this question is undecidable for dimensions four and higher. This problem is still open in three
dimensions, andthree-manifold topologyis an active area of research. For a very accessible overview, see Weeks [3].

Acknowledgments

The instruction for making flat 2-manifolds are from Firby and Gardiner [1]. I rendered the models of projective plane
in Figure5 in POV-Rayusing descriptions byTore Nordstrand. Figure6(b, c) are from [4].
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