
CS 468: Computational Topology Simplicial Complexes Fall 2002

Combinatorics is the slums of topology.

— J. H. C. Whitehead (attr.)

3 Simplicial Complexes

In the first lecture, we looked at concepts frompoint set topology, the branch of topology that studies continuity from
an analytical point of view. This view does not have a computational nature: we cannot represent infinite point sets
or their associated infinite open sets on a computer. Starting with this lecture, we will look at concepts from the other
major branch of topology:combinatorial topology. This branch also studies connectivity, but does so by examining
constructing complicated objects out of simple blocks, and deducing the properties of the constructed objects from the
simple blocks. While our view of the world–ourontology–will be mostly combinatorial in nature, we will see concepts
from point set topology reemerging under disguise, and we will be careful to expose them!

In this lecture, we begin by learning about simple building blocks from which we may construct complicated
spaces. Simplicial complexes are combinatorial objects that represent topological spaces. With simplicial complexes,
we separate the topology of a space from its geometry, much like the separation of syntax and semantics in logic.
Given the finite combinatorial description of a space, we are able to count, and the miracle of combinatorial topology
is that counting alone enables us to make statements about the connectivity of a space. We shall experience a first
instance of this marvelous theory in theEuler characteristic. This topological invariant gives a simple constructive
procedure for classifying 2-manifolds, completing our treatment from the last lecture.

3.1 Geometric Definition

We begin with a definition of simplicial complexes that seems to mix geometry and topology. Combinations allow us
to represent regions of space with very few points. In other words, allow us to describe simple cells which become our
building blocks later.

Definition 3.1 (combinations) Let S = {p0, p1, . . . , pk} ⊆ Rd. A linear combinationis x =
∑k

i=0 λipi, for some
λi ∈ R. An affine combinationis a linear combination with

∑k
i=0 λi = 1. A convex combinationis a an affine

combination withλi ≥ 0, for all i. The set of all convex combinations is theconvex hull.

You may have seen the concept ofindependencein studying linear algebra.

Definition 3.2 (independence)A setS is linearly (affinely) independentif no point inS is a linear (affine) combina-
tion of the other points inS.

We may now define our basic building block.

Definition 3.3 (k-simplex) A k-simplexis the convex hull ofk +1 affinely independent pointsS = {v0, v1, . . . , vk}.
The points inS are theverticesof the simplex.

A k-simplex is ak-dimensional subspace ofRd, dim σ = k. We show low-dimensional simplices with their names in
Figure1. Since all the points defining a simplex are affinely independent, so is any subset of them. This causes the
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Figure 1. k-simplices, for each 0 ≤ k ≤ 3. We show the orientation of the tetrahedron by the induced orientation on its faces.

simplex to have an interesting structure: it is composed of simplices of lower-dimension, or itsfaces.
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Definition 3.4 (face, coface)Let σ be ak-simplex defined byS = {v0, v1, . . . , vk}. A simplexτ defined byT ⊆ S
is afaceof σ and hasσ as acoface. The relationship is denoted withσ ≥ τ andτ ≤ σ. Note thatσ ≤ σ andσ ≥ σ.

Note that a simplex is always a face of itself by this definition.
We attach simplices together to represent spaces. This attaching is very much like using lego blocks to build

castles: we can only attach lego blocks on the special interfaces. Similarly, we may only attach simplices along their
special interfaces: their faces. The following definition formally defines our structures, which we callcomplexes. All
that the following cryptic definition states is that if a simplex is part of the complex, so are all its faces; and if two
simplices intersect, the intersection is part of the complex. It is good to see this formal definition, however, as we will
encounter similar ones in reading current research in computational topology, and we should lose our fear of them!

Definition 3.5 (simplicial complex) A simplicial complexK is a finite set of simplices such that

1. σ ∈ K, τ ≤ σ ⇒ τ ∈ K,

2. σ, σ′ ∈ K ⇒ σ ∩ σ′ ≤ σ, σ′ or σ ∩ σ′ = ∅.

Thedimensionof K is dim K = max{dim σ | σ ∈ K}. Theverticesof K are the zero-simplices inK. A simplex is
principal if it has no proper coface inK.

Here,properhas the same definition as for sets. So, a simplicial complex is a collection of simplices that fit together
nicely, as shown in Figure2 (a), as opposed to simplices in (b).

(a) The middle triangle shares an edge with the triangle on the left,
and a vertex with the triangle on the right.

(b) In the middle, the triangle is missing an edge. The simplices on
the left and right intersect, but not along shared simplices.

Figure 2. A simplicial complex (a) and disallowed collections of simplices (b).

3.2 Size of a Simplex

As already mentioned, combinatorial topology derives its power from counting. Now that we have a finite description
of a space, we can count easily. So, let’s use Figure1 to count the number of faces of a simplex. For example, an edge
has two vertices and an edge as its faces (recall that a simplex is a face of itself.) A tetrahedron has four vertices, six
edges, four triangles, and a tetrahedron as faces. These counts are summarized in Table1. What should the numbers be

k/l 0 1 2 3
0 1 0 0 0
1 2 1 0 0
2 3 3 1 0
3 4 6 4 1
4 ? ? ? ?

Table 1. Number of l-simplices in each k-simplex.

for a 4-simplex? The numbers in the table may look really familiar to you. If we add a 1 to the left of each row, we get
Pascaĺs triangle, as shown in Figure3. Recall that Pascal’s triangle encodes the binomial coefficients: the number of
different combinations ofl objects out ofk objects or

(
k
l

)
. Here, we havek + 1 points representing ank-simplex, any
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1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

Figure 3. If we add a 1 to the left side of each row in Table 1, we get Pascal’s triangle.

l + 1 of which defines al-simplex. To make the relationship complete, we define the empty set∅ as the(−1)-simplex.
This simplex is part of every simplex and allows us to add a column of 1’s to the left side of Table1 to get Pascal’s
triangle. It also allows us to eliminate the underlined part of Definition3.5, as the empty set of part of both simplices
for non-intersecting simplices. To get the total size of a simplex, we sum each row of Pascal’s triangle. Ak-simplex
has

(
k+1
l+1

)
faces of dimensionl and

k∑
l=−1

(
k + 1
l + 1

)
= 2k+1

faces in total. A simplex, therefore, is a very large object. Mathematicians often do not find it appropriate for “compu-
tation”, when computation is being done by hand. Simplices are very uniform and simple in structure, however, and
therefore provide an ideal computational gadget for computers.

3.3 Abstract Definition

Our discussion on the size of a simplex shows that we can view a simplex as a set along and its power set (the collection
of all its subsets. This view of a simplex is attractive because it avoids references to geometry in defining a simplicial
complex. It also should give you eerie feelings of déjà vu, as it matches the definition of a topology

Definition 3.6 (abstract simplicial complex) An abstract simplicial complexis a setK, together with a collectionS
of subsets ofK called(abstract) simplicessuch that:

1. For allv ∈ K, {v} ∈ S. We call the sets{v} theverticesof K.

2. If τ ⊆ σ ∈ S, thenτ ∈ S.

When it is clear from context whatS is, we refer toK as a complex. We sayσ is a k-simplexof dimensionk if
|σ| = k + 1. If τ ⊆ σ, τ is afaceof σ, andσ is acofaceof τ .

Note that the definition automatically allows for∅ as a(−1)-simplex. We will often abuse notation and refer toS as the
complex. The abstract definition affirms the notion that topology only cares about how the simplices are connected,
and not how they are placed within a space. We now relate this abstract set-theoretic definition to the geometric one
by extracting the combinatorial structure of a (geometric) simplicial complex.

Definition 3.7 (vertex scheme)Let K be a simplicial complex with verticesV and letS be the collection of all
subsets{v0, v1, . . . , vk} of V such that the verticesv0, v1, . . . , vk span a simplex ofK. The collectionS is called the
vertex schemeof K.

Clearly, the setK and the the collectionS together form an abstract simplicial complex. It allows us to compare
simplicial complexes easily, using isomorphisms between sets.

Definition 3.8 (isomorphism) Let K1,K2 be abstract simplicial complexes with verticesV1, V2 and subset collec-
tionsS1, S2, respectively. AnisomorphismbetweenK1,K2 is a bijectionϕ : V1 → V2, such that the sets inS1 and
S2 are the same under the renaming of the vertices byϕ and its inverse.

Theorem 3.1 Every abstract complexS is isomorphic to the vertex scheme of some simplicial complexK. Two
simplicial complexes are isomorphic iff their vertex schemes are isomorphic as abstract simplicial complexes.
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Definition 3.9 (Geometric Realization) If the simplicesS of an abstract simplicial complexK1 isomorphic with the
vertex schemeS of the simplicial complexK2, we callK2 a geometric realizationof K1. It is uniquely determined
up to an isomorphism, linear on the simplices.

A geometric realization of an abstract simplicial complex is the analog of an immersion of a manifold, as the simplices
may intersect once we place the complex inside a space. Simplices are convex hulls which are compact, so we do not
have to worry about other “nasty” immersions.

Having constructed a finite simplicial complex, we will divide it into topological and geometric components.
The former will be a abstract simplicial complex, a purely combinatorial object, easily stored and manipulated in a
computer system. The latter is a map of the vertices of the complex into the space in which the complex is realized.
Again, this map is finite, and can be approximately represented in a computer using a floating point representation.

Example 3.1 (Wavefront OBJ format) This representation of a simplicial complex translates word for word into
most common file formats for storing surfaces. One standard format is the OBJ format fromWavefront. The format
first describes the map which places the vertices inR3. A vertex with location(x, y, z) ∈ R3 gets the line “v x y z”
in the file. After specifying the map, the format describes an simplicial complex by only listing its triangles, which
are the principal simplices (see Definition3.5.) The vertices are numbered according to their order in the file and
numbered from 1. A triangle with verticesv1, v2, v3 is specified with line “f v1 v2 v3”. The description in an OBJ file

v -0.269616 0.228466 0.077226
v -0.358878 0.240631 0.044214
v -0.657287 0.527813 0.497524
v 0.186944 0.256855 0.318011
v -0.074047 0.212217 0.111664
...
f 19670 20463 20464
f 8936 8846 14300
f 4985 12950 15447
f 4985 15447 15448
...

Figure 4. Portions of an OBJ file specifying the surface of the Stanford Bunny.

is often called a “triangle soup”, as the topology is specified implicitly and must be extracted.

3.4 Subcomplexes

Recall that a simplex is the power set of its simplices. Similarly, a natural view of a simplicial complex is that it is
special subset of the power set of all its vertices. The subset isspecialbecause of the requirements in Definition3.6.
Consider the small complex in Figure5(a). The diagram (b) shows how the simplices connect within the complex: it

a

d

ec

b

(a) A small complex

a b c

ac bc

φ

ab

abc

d e

decd

(b) Poset of the small complex, with principal simplices marked.

φ

φ

(c) An abstract poset: the “water
level” of the poset is defined by prin-
cipal simplices.

Figure 5. Poset view of a simplicial complex
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has a node for each simplex, and an edge indicating a face-coface relationship. The marked principal simplices are the
“peaks” of the diagram. This diagram is, in fact, aposet.

Definition 3.10 (poset)Let S be a finite set. Apartial order is a binary relation≤ onS that is reflexive, antisymmet-
ric, and transitive. That is for allx, y, z ∈ S,

1. x ≤ x,

2. x ≤ y andy ≤ x impliesx = y, and

3. x ≤ y andy ≤ z impliesx ≤ z.

A set with a partial order is apartially ordered setor posetfor short.

It is clear from the definition that the face relation on simplices is a partial order. Therefore, the set of simplices
with the face relation forms a poset. We often abstractly imagine a poset as in Figure5(c). The set is fat around its
waist because the number of possible simplices

(
n
k

)
is maximized fork ≈ n/2. The principle simplices form a level

beneath which all simplices must be included. Therefore, we may recover a simplicial complex by simply storing its
principal simplices, as in the case with triangulations in Example3.1. This view also gives us intuition for extensions
of concepts in point set theory to simplicial complexes. A simplicial complex may be viewed as a closed set (itis a
closed point set, if it is geometrically realized.)

Definition 3.11 (subcomplex, link, star) A subcomplexis a simplicial complexL ⊆ K. The smallest subcomplex
containing a subsetL ⊆ K is its closure, ClL = {τ ∈ K | τ ≤ σ ∈ L}. Thestar ofL contains all of the cofaces of
L, StL = {σ ∈ K | σ ≥ τ ∈ L}. Thelink of L is the boundary of its star, LkL = Cl StL− St(Cl L− {∅}).

Figure6 demonstrates these concepts within the poset for our complex in Figure5. A subcomplex is the analog of a
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(a) Cl{bc, d}
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(b) St{c, e} (light) and its closure
Cl St{c, e} (dark)
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de

abc

cd

(c) Lk {c, e}

Figure 6. Closure, star, and link of simplices

subset for a simplicial complex. Given a set of simplices, we take all the simplices “below” the set within the poset
to get its closure (a), and all the simplices “above” the set to get its star (b). The face relation is the partial order
that defines “above” and “below”. Most of the time, the star of a set is an open set (viewed as a point set) and not a
simplicial complex. The star corresponds to the notion of a neighborhood for a simplex, and like a neighborhood, it is
open. The closure operation completes the boundary of a set as before, making the star a simplicial complex (b). The
link operation gives us the boundary. In our example, Cl{c, e} − ∅ = {c, e}, so we remove the simplices from the
light regions from those in the dark region in (b) to get the link (c). Therefore, the link ofc ande is the edgeab and
the vertexd. Check on Figure5(a) to see if this matches your intuition of what a boundary should be.

3.5 Triangulations

The primary reason we study simplicial complexes is to for manifold representation.

Definition 3.12 (underlying space)Theunderlying space|K| of a simplicial complexK is |K| = ∪σ∈Kσ.
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Note that|K| is a topological space, as defined in the last lecture.

Definition 3.13 (triangulation) A triangulation of a topological spaceX is a simplicial complexK such that
|K| ≈ X.

For example, the boundary of a 3-simplex (tetrahedron) is homeomorphic to a sphere and is a triangulation of the
sphere, as shown in Figure7.

~~

Figure 7. The boundary of a tetrahedron is a triangulation of a sphere, as its underlying space is homeomorphic to the sphere.

� The term “triangulation” is used by different fields with different meanings. For example, in computer graphics,
the term most often refers to “triangle soup” descriptions of surfaces. The finite element community often refers

to triangle soups as amesh, and may allow other elements, such as quadrangles, as basic building blocks. In areas,
three-dimensional meshes composed of tetrahedra are calledtetrahedralizations. Within topology, a triangulation
refers to complexes ofanydimension, however.

3.6 Orientability

We had a definition of orientability in the notes for the first lecture that depended on differentiability. We now extend
this definition to simplicial complexes, which are not smooth. This extension further affirms that orientability is a
topological property not dependent on smoothness.

Definition 3.14 (orientation) Let K be a simplicial complex. Anorientation of a k-simplex σ ∈ K,
σ = {v0, v1, . . . , vk}, vi ∈ K is an equivalence class of orderings of the vertices ofσ, where

(v0, v1, . . . , vk) ∼ (vτ(0), vτ(1), . . . , vτ(k)) (1)

are equivalent orderings if the parity of the permutationτ is even. We denote anoriented simplex, a simplex with an
equivalence class of orderings, by[σ].

Note that the concept of orientation derives from that fact that permutations may be partitioned into two equivalence
classes (if you have forgotten these concepts, you may reviewpermutationsandpartitions in the notes from lecture 1
and 2, respectively.) Orientations may be shown graphically using arrows, as shown in Figure8. We may use oriented

vertex

a

edge

a b
c

a

b

tetrahedron

a

b

c

d

a [a, b]
triangle
[a, b, c] [a, b, c, d]

Figure 8. k-simplices, 0 ≤ k ≤ 3. The orientation on the tetrahedron is shown on its faces.

simplices to define the concept of orientability to triangulatedd-manifolds.
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Definition 3.15 (orientability) Two k-simplices sharing a(k − 1)-faceσ are consistently orientedif they induce
different orientations onσ. A triangulabled-manifold isorientableif all d-simplices can be oriented consistently.
Otherwise, thed-manifold isnon-orientable

Last lecture, we saw two basic non-orientable 2-manifolds: the Klein bottle and the projective plane. Our exposi-
tion shows that non-orientable manifolds exist in all dimensions, however.

Example 3.2 (Rendering)The surface of a three-dimensional object is a 2-manifold and may be modeled with a
triangulation in a computer. In computer graphics, these triangulations are rendered using light models that assign
color to each triangle according to how it is situation with respect to the lights in the scene, and the viewer. To do this,
the model needs the normal for each triangle. But each triangle has two normals pointing in opposite directions. To
get a correct rendering, we need the normals to be consistently oriented.

3.7 Euler Characteristic

Having seen orientability for simplicial surfaces, we finish this lecture by looking at our first topological invariant.

Definition 3.16 (invariant) A (topological) invariantis a map that assigns the same object to spaces of the same
topological type.

Note that an invariant may assign the same object to spaces of different topological type. In other words, an invariant
need not becomplete. All that is required by the definition is that if the spaces have the same type, they are mapped
to the same object. Generally, this characteristic of invariants implies their utility in contrapositives: if two spaces
are assigned different objects, they have different topological types. On the other hand, if two spaces are assigned the
same object, we usually cannot say anything about them. Let’s states our statements formally for an invariantf :

X ≈ Y =⇒ f(X) = f(Y)
f(X) 6= f(Y) =⇒ X 6≈ Y (contrapositive)

f(X) = f(Y) =⇒ nothing

A good invariant, however, will have enough differentiating power to be useful through contrapositives. Here, we a
famous invariant the Euler characteristic.

Definition 3.17 (Euler characteristic) Let K be a simplicial complex andsi = |{σ ∈ K | dim σ = i}|. TheEuler
characteristicχ(K) is

χ(K) =
dim K∑
i=0

(−1)isi =
∑

σ∈K−{∅}

(−1)dim σ. (2)

While it is defined for a simplicial complex, the Euler characteristic is an integer invariant for|K|, the underlying
space ofK. Given any triangulation of a spaceM, we always will get the same integer, which we will call the Euler
characteristic of that spaceχ(M).

3.8 2-Manifolds

Armed with triangulations, orientability, and the Euler characteristic, we return to 2-manifolds to convert our “ex-
istential” proof from last lecture to a computational one. We begin with calculating the Euler characteristic for the
basic surfaces from the last lecture. We have a triangulation of a sphereS2 in Figure7, soχ(S2) = 4 − 6 + 4 = 2.
To compute the Euler characteristic of the other manifolds, we must build triangulations for them. This is simple,
however, by triangulating the diagrams for constructing flat 2-manifolds from the last lecture, as in Figure9. This
triangulation gives usχ(T2) = 9 − 18 + 27 = 0. We may complete the table in Figure9(b) in a similar fashion. As
χ(T2) = χ(K2) = 0, the Euler characteristic by itself is not powerful enough to differentiate between surfaces.

Last lecture, we also discussed constructing more complicated surfaces using the connected sum. Suppose we
form the connected sum of two surfacesM1, M2 by removing a single triangle from each, and identifying the two
boundaries. Clearly, the Euler characteristic should be the sum of the Euler characteristics of the two surfaces, minus
2 for the two missing triangles. In fact, this is true for arbitrary shaped disks.
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0

0 1 2 0

6 7 8 6

0 1 2

3 4 5 3

(a) A triangulation for the diagram of the torusT2

2-Manifold χ

SphereS2 2
TorusT2 0
Klein bottleK2 0
Projective planeRP2 1

(b) The Euler characteristics of our basic 2-manifolds

Figure 9. A triangulation of the diagram of the torus T2

Theorem 3.2 For compact surfacesM1, M2, χ(M1 # M2) = χ(M1) + χ(M2)− 2.

For a compact surfaceM, let gM be the connected sum ofg copies ofM. Combining this theorem with the table in
Figure9(b), we get the following.

Corollary 3.1 χ(gT2) = 2− 2g andχ(gRP2) = 2− g.

These surfaces, along with the sphere, form the equivalence classes of 2-manifolds discussed in the last lecture.

Definition 3.18 (genus)The connected sum ofg tori is called a surface withgenusg.

The genus refers to how many “holes” the multi-donut surface has. We are now ready to give a complete answer to
the homeomorphism problem for closed compact 2-manifolds.

Theorem 3.3 (Homeomorphism problem of 2-manifolds)Closed compact surfacesM1 and M2 are homeomor-
phic,M1 ≈ M2 iff

1. χ(M1) = χ(M2) and

2. either both surfaces are orientable or both are non-orientable.

Observe that the theorem is “if and only if”. We can easily compute the Euler characteristic of any 2-manifold.
Computing orientability is also easy by orienting one triangle and “spreading” the orientation throughout the manifold
if it is orientable. Therefore, we have a full computational method for capturing topology of 2-manifolds. As we shall
see in the future lectures, the problem is much harder in higher dimensions, forcing us to resort to more elaborate
machinery.
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