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Wir müssen wissen, wir werden wissen.
(We must know, we will know.)

— David Hilbert (1862–1943)

5 Homotopy

In Lecture 4, we learned about an algebraic method for describing and classifying structures. In this lecture, we look
at using algebra to find combinatorial descriptions of topological spaces. We begin by looking at an equivalence
relation calledhomotopythat gives a classification of spaces that is coarser that homeomorphism, but respects the
finer classification. That is, two spaces that have the same topological typemusthave the same homotopy type, but the
reverse does not necessarily hold. This property should remind you of our definition of a topological invariant. We then
continue by looking at a powerful method for understanding topological spaces by forming algebraic images of them
usingfunctors. One functor is thefundamental group, the first group description of a space we will see. Unfortunately,
this group is hard to compute and may not give us a finite description. It does, however, give us a method for proving
that both the homeomorphism problem and the homotopy problem (detecting whether two spaces are homotopic) are
undecidable.

5.1 Homotopy

We defined topological type using homeomorphisms. Often, we observe a qualitative similarity in shape that does
not need the full power of a homeomorphism. Rather, we map a space onto a subset of the space that somehow
characterizes its connectivity.

Definition 5.1 (deformation retraction) A deformation retractionof a spaceX onto a subspaceA is a family of maps
ft : X → X, t ∈ [0, 1] such thatf0 is the identity map,f1(X) = A, andft|A is the identity map, for allt. The family
should be continuous, in the sense that the associated mapX× [0, 1] → X, (x, t) 7→ ft(x) is continuous.

In other words, starting from the original spaceX at time 0, we continuously deform the space until it becomes the
subspaceA at time 1. We do this without ever moving the subspaceA in the process. In Figure1, the spaceX is a
fat letter ’A’, and its subspaceA is a thin letter ’A’. We retract the fat letter onto the thin letter continuously to get a

X A

Figure 1. The deformation retraction of a fat letter ’A’ onto a thin one, and finally to a cycle.

deformation retraction. Note that the two spaces seem to be connected the same way, but are of different dimension.
We may continue this retraction until we get the cycle on the right. Once we get the cycle, we are stuck. We cannot
go further and retract the space into a single point.

A deformation retraction is a special case of a homotopy, where the requirement of the final space being a subspace
is relaxed.

Definition 5.2 (homotopy) A homotopyis a family of mapsft : X → Y, t ∈ [0, 1], such that the associated map
F : X × [0, 1] → Y given byF (x, t) = ft(x) is continuous. Then,f0, f1 : X → Y arehomotopicvia the homotopy
ft. We denote this asf0 ' f1.

Suppose we have a retractionf as in Definition5.1. If we let i : A → X to be the inclusion map, we havef1 ◦ i ' 1
andi ◦ f1 ' 1. This allows us to classifyX and its subspaceA as having the same connectivity using the mapsf1, i.
This is just a special case of homotopy equivalence.
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Definition 5.3 (homotopy equivalence)A map f : X → Y is called ahomotopy equivalenceif there is a map
g : Y → X, such thatf ◦g ' 1X andg◦f ' 1Y. Then,X andY arehomotopy equivalentand have the samehomotopy
type. This fact is denoted asX ' Y.

In Lecture 2, we saw an equivalence class based on homeomorphisms. Homotopy is also an equivalence relation, but
it does not have the differentiating power of homeomorphisms: two spaces with different topological type could have
the same homotopy type. The simplest type of spaces have the homotopy type of a point.

Definition 5.4 (contractible) A space with the homotopy type of a point is calledcontractible.

Figure1 shows a non-contracible space that is homotopy equivalent to a circle. As a weaker invariant, homotopy is
still quite useful, as homeomorphic spaces are homotopic.

Theorem 5.1 X ≈ Y ⇒ X ' Y.

Again, we may utilize the theorem by using its contrapositive: if two spaces are not homotopic, they are not homeo-
morphic. If the spaces turn out to be homotopic, however, we gain no information about their topological types.

5.2 Categories and Functors

A powerful technique for studying topological spaces is to form and study algebraic images of them. This idea forms
the crux of algebraic topology. Usually, these “images” are groups, but richer structures also arise, although we do
not have time in this class to discuss them. Our hope is that in the process of forming these images, we retain enough
detail to accurately reconstruct the shapes of spaces. As we are interested in understanding how spaces are structurally
related, we also want maps between spaces to be converted into maps between the images. The mechanism we use for
forming these images arefunctors. To use functors, we need a concept called categories, which may be viewed as an
abstraction of abstractions.

Definition 5.5 (category) A categoryC consists of:

1. a collection Ob(C) of objects,

2. sets Mor(X, Y ) of morphismsfor each pairX, Y ∈ Ob(C), including a distinguished identity morphism1 =
1X ∈ Mor(X, X) for eachX.

3. a composition of morphisms function◦ : Mor(X, Y ) × Mor(Y, Z) → Mor(X, Z) for each tripleX, Y, Z ∈
Ob(C), satisfyingf ◦ 1 = 1 ◦ f = f , and(f ◦ g) ◦ h = f ◦ (g ◦ h).

We have already seen a few examples of categories, as listed in Table1. A functor relates two categoriesand their

category morphisms

sets arbitrary functions
groups homomorphisms
topological spaces continuous maps
topological spaces homotopy classes of maps

Table 1. Some categories and their morphisms.

morphisms. We are very familiar with maps of spaces and their images. What is new here is that the functor also maps
maps, as shown in Figure2.

Definition 5.6 (functor) A (covariant) functorF from a categoryC to a categoryD assigns to each objectX ∈ C

an objectF (X) ∈ D, and to each morphismf ∈ Mor(X, Y ), a morphismF (f) ∈ Mor(F (X), F (Y )), such that
F (1) = 1 andF (f ◦ g) = F (f) ◦ F (g).

The concepts of functors and categories help our intuition in unifying the various techniques we will employ in under-
standing topological spaces. We will not, however, need these concepts in any deeper fashion.
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Figure 2. A functor F creates images F (A), F (B) of not only the objects A, B in a category, but also of maps between the objects,
such as F (f).

5.3 Fundamental Group

One of the simplest and most important functors in algebraic topology is the fundamental group. This is the first
functor we will examine. It captures the topology of loops on a surface in form of a group. To form this group, we
need a set and a binary operation that has the appropriate properties. Our set will be composed of loops on a surface.

Definition 5.7 (path, loop) A path in X is a continuous mapf : [0, 1] → X. A loop is a pathf with f(0) = f(1),
i.e. a loop starts and ends at the samebase-point. The equivalence class of a pathf under the equivalence relation of
homotopy is[f ].

For example, Figure3 shows two homotopic paths. You may imagine the path as a string that is somehow stuck on a

X

Figure 3. The path on the left is homotopic to the path on the right. The image of the path under the homotopy is shown for some
instances.

surface and may only be moved on that surface. You then smoothly deform the piece of string to go from one path to
a homotopic path. If we have two paths such that the first path ends at the origin of the second path, we may form the
product of the paths.

Definition 5.8 (product path) Given two pathsf, g : [0, 1] → X, theproduct pathf · g is a path which traversesf
and theng.

The speed of traversal is doubled in order forf · g to be traversed in unit time. Clearly, this product operation respects
homotopy classes. Furthermore, if we restrict ourselves to loops, the operation is closed and associative. The identity
loop is thetrivial loop that never moves from the point. The inverse of a loop is simply the loop traversed backwards.
Therefore, homotopic loops along with the product path binary operation form a group.

Definition 5.9 (fundamental group) The fundamental groupπ1(X, x0) of X andx0 has the homotopy classes of
loops inX based atx0 as its elements, and[f ][g] = [f · g] as its binary operation.

Example 5.1 (π1(T2)) Figure4 shows three loops on a torus. The loops on the right are homotopic to each other,
and may be deformed to the base-point through the highlighted surface. The thick loop, however, goes around the neck
of the torus and may not be deformed to the base-point, as it does not bound any surface around the neck. As a torus
is connected, the base-point may be moved around, so we can omit it from our notation. The thick loop is one of the
generators ofπ1(T2). The other generator goes around the width of the torus. The two generators are not homotopic,
andπ1(T2) ∼= Z× Z, although this result is not immediate.
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Figure 4. The thick loop goes around the neck of the torus and is not homotopic to the other two loops, which are homotopic through
the highlighted surface.

Note that what distinguishes the generators of the fundamental group in our example is that there is no disk whose
boundary is that loop. That is, if we can find any disk thatboundsour loop, we may then retract the loop via a
deformation retraction to the base-point.

Definition 5.10 (boundaries) A loop on manifoldM that is the boundary of a disk is aboundary. Otherwise, the loop
is non-bounding.

All bounding loops are equivalent to the trivial loop and contract to a point.
The fundamental group is, in fact, one in a series ofhomotopy groupsπn(X) for a spaceX. The higher-dimensional

homotopy groups extend the notion of a loop ton-dimensional cycles and capture the homotopy classes of these cycles.
Once again, homeomorphic spaces have the same homotopy groups. Equivalent homotopy groups, however, do not
imply the same topological type. We may still use these groups to differentiate between spaces using the contrapositive
statement. We do not, however, on the following grounds:

1. The definition of the fundamental group is inherently non-combinatorial, as it depends on smooth maps and the
topology of the space.

2. The higher-dimensional homotopy groups are very complicated and hard to compute. In particular, they are not
directly computable from a cell decomposition of a space, such as a simplicial decomposition.

3. Even if we were able to compute the homotopy groups, we may get an infinite description of a space: only
a finite number of homotopy groups may be non-trivial for ann-dimensional space. Infinite descriptions are
certainly not viable for computational purposes.

5.4 Markov’s Proof

The definition of the fundamental group enables us to give a quick sketch of Markov’s proof of the undecidability of
the homeomorphism problem in dimensions greater than 4. In 1912, Dehn proposed the following problem: given two
finitely presented groups, decide whether or not they are isomorphic. In 1955, Adyan showed that for any fixed group,
Dehn’s problem is undecidable. Markov knew that homeomorphic manifolds have the same fundamental group. So,
he described a procedure for building a manifold whose fundamental group was related to a given finitely presented
group. In particular, its fundamental group would not be the trivial group unless the manifold itself was contractible. In
this fashion, Markov reduced the homeomorphism problem to the isomorphism of groups, proving its undecidability.

Suppose we have a presentation of a groupG : (a1, . . . , an : r1, . . . , rm) with n generators andm relations.
Markov maps each generator to an equivalence class of homotopic loops in a 4-manifold. To do so, he attaches
n handles toB4, the four dimensional closed ball, as shown in Figure5. This base manifoldM is equivalent to
the connected sum ofn four-dimensional tori. The fundamental group of this manifold, then, is generated byn
generators, each of whom is represented by one of the handles. We name each handle, with one of the two directions,
as a generator. The inverse of each generator is when we travel in the opposite direction in each handle.

Having constructed a manifold with the appropriate generators, Markov next considers the relations. Each relation
statesri = 1, that is, the wordri is equivalent to the identity element. Markov maps the relationri into an equivalence
class of homotopic loops inM, as shown for the loopα−1

1 α3α4α2 in Figure5. Any loop Ci associated tori in M
should be bounding and equivalent to the trivial loop. To establish this, we begin by taking a tubularNi neighborhood
of Ci. We make sure these neighborhoods do not intersect each other. We carveNi out of M to getM′, leaving an
tunnel that represents the relationri.
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Figure 5. A four dimensional closed ball B4 with four handles, corresponding to generators α1 through α4 with the indicated directions.
The loop corresponds to loop α−1

1 α3α4α2.

To turnCi into the trivial loop, we need to “sew in” an appropriate disk whose boundary is the loop, turning the
loop into a boundary. Each loopCi is homeomorphic toS1 by definition. When creating the neighborhoodsNi, we
place a copy ofB3 at every point ofCi. This action corresponds to getting the product of the two spaces.

Definition 5.11 (products of manifolds) Theproductof two topological spaces consists of the Cartesian product of
their sets, along with theproduct topologythat consists of the Cartesian product of their open sets.

Figure6 displays three product spaces. According to the definition, our tubular neighborhood isNi ≈ S1 × B3.

(a)S0 × B2 (b) S0 × S1 (c) B1 × S1

Figure 6. The two circles in (b) constitute the boundary of both disks in (a) and the cylinder in (c). This fact allowed us to construct
connected sums of 2-manifolds: we carved out two disks (a) and connected a handle (c) on the boundary (b).

Consequently, its boundary is∂Ni ≈ S1 × S2, with the closed ball contributing the boundary. We now use a trick we
used in creating connected sums of 2-manifolds, as shown in Figure6 in lower dimensions. That is, we find another
space whose boundary is homeomorphic to∂Ni. We have∂Ni ≈ S1×S2 ≈ ∂(B2×S2). So, we glue the boundary of
B2× S2 to the boundary left byNi to getM1. Within M1, the loop corresponding to relationri is retractable, because
we just gave it a disk through which it can contract to a point. So, by performing aDehn surgery, we have killedri.
But we have also killed several other relations, too. For example, in Figure5, we have also killedα3α4α2α

−1
1 . This is

equivalent to adding relations to the finitely presented group. We perform this surgery on the other relations, arriving
atMm, a topological space whose fundamental group is similar to the presented groupG.

But now, we are done. By Adyan’s result, the isomorphism problem for any fixed group is undecidable. In
particular, we may pick the trivial group, the fundamental group of the sphere. If we could decide whetherMm is
homeomorphic toS4, we could solve an undecidable problem. The same proof works if we go back and replace
all occurrences of “homeomorphism” by “homotopy”, making the latter classification undecidable. It also works for
higher dimensional manifolds. Markov eventually extended his undecidability proof to any “interesting property”,
although this result is known asRice’s Theorem, as it was independently proven and published by Rice in the West.
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Acknowledgments

I borrow heavily from Hatcher [4] for the treatment of homotopy and the fundamental group. An English translation of
Markov’s result [5] is available off my web site. He worked during the golden age of Soviet mathematics at the Steklov
Institute. Matiyasevich [6] and Adyan [2] discuss the Markov and Novikov schools of mathematics, respectively.
Adyan’s result [1] is only available in Russian, but one may substitute Rabin’s independent proof [7]. For a history of
undecidability theory, see Davis [3].
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