SURFACE TOPOLOGY

CS 468 – Lecture 2 10/2/2

OVERVIEW

- Last lecture:
 - Manifolds: locally Euclidean
 - Homeomorphisms: bijective bi-continuous maps
 - Topology studies invariant properties
 - Classification?
- This lecture:
 - Topological Type
 - Basic 2-Manifolds
 - Connected Sum
 - Classification Theorem
 - Conway's ZIP proof

PARTITIONS

- A partition of a set is a decomposition of the set into subsets (cells) such that every element of the set is in one and only one of the subsets.
- Let \sim be a relation on a nonempty set S so that for all $a, b, c \in S$:
 - 1. (Reflexive) $a \sim a$.
 - 2. (Symmetric) If $a \sim b$, then $b \sim a$.
 - 3. (Transitive) If $a \sim b$ and $b \sim c$, $a \sim c$.

Then, \sim is an equivalence relation on S.

• Homeomorphism is an equivalence relation.

TOPOLOGICAL TYPE

- (**Theorem**) Let S be a nonempty set and let \sim be an equivalence relation on S. Then, \sim yields a natural partition of S, where $\bar{a} = \{x \in S \mid x \sim a\}$. \bar{a} represents the subset to which a belongs to. Each cell \bar{a} is an equivalence class.
- Homeomorphism partitions manifolds with the same topological type.
- Can we compute this?
 - -n=1: too easy
 - -n=2: yes (this lecture)
 - -n=3:?
 - $-n \ge 4$: undecidable! [Markov 1958]

Basic 2-Manifolds: SPHERE \mathbb{S}^2

Basic 2-Manifolds: MÖBIUS STRIP

Basic 2-Manifolds: PROJECTIVE PLANE $\mathbb{R}P^2$

Basic 2-Manifolds: Models of $\mathbb{R}P^2$

Basic 2-Manifolds: KLEIN BOTTLE \mathbb{K}^2

Basic 2-Manifolds: IMMERSION OF \mathbb{K}^2

(a) Klein Bottle

(b) Möbius Strip

CONNECTED SUM

• The connected sum of two n-manifolds M_1, M_2 is

$$\mathbb{M}_1 \# \mathbb{M}_2 = \mathbb{M}_1 - \mathring{D_1^n} \bigcup_{\partial \mathring{D_1^n} = \partial \mathring{D_2^n}} \mathbb{M}_2 - \mathring{D_2^n},$$

where D_1^n, D_2^n are *n*-dimensional closed disks in M_1, M_2 , respectively.

CLASSIFICATION THEOREM

- (**Theorem**) Every closed compact surface is homeomorphic to a sphere, the connected sum of tori, or connected sum of projective planes.
- Known since 1860's
- Seifert and Threlfall proof
- Conway's Zero Irrelevancy Proof or ZIP (1992)
- Francis and Weeks (1999)

CONWAY'S ZIP: CAP

CONWAY'S ZIP: CROSSCAP

CONWAY'S ZIP: HANDLE

CONWAY'S ZIP: CROSS HANDLE

CONWAY'S ZIP: PERFORATIONS

CONWAY'S ZIP: ORDINARY SURFACES

- Every (compact) surface is homeomorphic to a finite collection of spheres, each with a finite number of handles, crosshandles, crosscaps, and perforations.
- That is, all surfaces are ordinary.

CONWAY'S ZIP: ZIP-PAIRS

CONWAY'S ZIP:

LEMMA 1: XHANDLE = 2 XCAPS

CONWAY'S ZIP:

LEMMA 2: XHANDLE + XCAP = HANDLE + XCAP

[Dyck 1888]

CONWAY'S ZIP: PROOF

- Otherwise, we have handles, crosshandles, and crosscaps
- Lemma 1: crosshandle = 2 crosscaps
- Lemma 2: crosshandle + crosscap = handle + crosscap
- So, handle + crosscap = 3 crosscaps
- We get sphere, sphere with handles, or sphere with crosscaps. QED

SPHERE EVERSIONS

- Sphere is orientable (two-sided)
- So, turn it inside out!
- Smale 1957
- Morin 1979
- "Turning a Sphere Inside Out" [Max 1977]
- "Outside In" [Thurston 1994]
- "The Optiverse" [Sullivan 1998]

Two Eversions

Outside In [Thurston 94]

• The Optiverse [Sullivan 98]