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M. C. ESCHER

| had not yet seen the tile decorations of the Alhambra and never heard of crystal-
lography; so | did not even know that my game was based on rules that have been
scientifically investigated.

| never got a pass in math.... And just imagine—mathematicians now use my prints
to illustrate their books.
— M. C. Escher
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OVERVIEW

Abstract algebra: studying core properties

Groups

Subgroups and Cosets

Homomorphisms

Factor groups

Cyclic groups

Finitely generated abelian groups
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Afra Zomorodian — CS 468

BINARY OPERATION

If it always assigns an element i) it is closed
It is associativeff (axb)xc=ax*(bxc)foralla,b,ceS.

It is commutativaff a xb=bxaforalla,b e S.

al|lb|c
al| b|c|a
cllal|b]|c
blle|lal|b

A binary operatiorx on a setS is a rule that assigns to each ordered
pair (a, b) of elements ofS some element iis.

If x assigns a single element, itugell-defined if no element, it inot
defined if multiple elementsnot well-defined
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ABSTRACTION

1. 54+2x=2 — Z—
2.2r =3 = Q

3.22=—-1 = C
S5+x = 2 Given
-5+ (B+xz) = —-5+2 Addition property of equality
(=5+5)+x = —-5+2 Associative property of addition
O+x = —-5+4+2 Inverse property of addition
r = —5+4+2 |dentity property of addition
r = -3 Addition
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GROUPS

* A group(G, =) is a set7, together with a binary operationon G,
such that the following axioms are satisfied:

(a) * Is associative.

(b) G has andentity e element for« such that x x =  x e = x for
all x € G.

(c) any element has annversea’ with respect to the operation
l.e.Va € G,3a’ € Gsuchthatt xa =axa’ =e.

If GG is finite, theorderof G is |G]|.

We often omit the operation and refer@as the group.

(Z,+), (R,-), (R,+), are all groups.

A groupG is abelianif its binary operations is commutative.
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SMALL GROUPS

(EXAMPLE)

Zs ||l elalb

Zo || €| a
e |llelalb

e |l el a
a |la|b|e

a ||ale
b llble|a
Zy|lO]1]12]3 Villelal|b]|c
O [O]12]3 e lela|b]|c
1 |[11213]0 a |lalelcl|b
2 12131011 b |lblclela
31310112 cllec|lblale
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SYMMETRY GROUPS

(EXAMPLE)

« If the space has a metnt; a transformatio is anisometryif
d(z,y) =d(¢(x),d(y)), thatis, ifp preserves distance.

o A symmetryis any isometry that leaves the object as a whole
unchanged. Symmetries form groups!
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SUBGROUPS

Let (G, x) be agroup and C G. If S is closed undex, thenx is the
Induced operation of from G.

A subsetH C G of group(G, ) is asubgroup oG if H is a group
and is closed undet. The subgroup consisting of the identity
element ofG, {e} is thetrivial subgroupof GG. All other subgroups
arenontrivial.

(TheoremH C G of a group(G, *) is a subgroup of iff:
1. H is closed undek,

2. the identitye of G is in H,

3. forallac H,a ! € H.

Example: subgroups &,
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COSETS

e Let H be a subgroup dof;. Let the relation~;, be defined o1t~ by:
a~yp biff a=1b € H. Let~p be defined bya ~ biff ab=! € H.
Then~, and~ g are both equivalence relations 6h

» Let H be a subgroup of grou@@. Fora € GG, the subset
aH = {ah | h € H} of G is theleft cosetof H containinga, and
Ha = {ha | h € H} is theright coseiof H containinga.

o If left and right cosets match, the subgroumemal

« All subgroupsH of an abelian groug- are normal, as
ah = ha,Va € G,h € H

« {0,2} is a subgroup oZ,. Itis normal. The coset of 1 is
1+ {0,2} = {1, 3}. That's all folks!
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FACTOR GROUPS

e Let H be a normal subgroup of group.

 Left coset multiplication is well-defined by the equation
(aH)(bH) = (ab)H

» The cosets o form a groupG/H under left multiplication
* (G/H is thefactor group(or quotient groupof G modulo H..

* The elements in the same cosettbiarecongruent moduldd.
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FACTOR GROUPS

(EXAMPLE)
Z; /0 3|1/ 4|2 5
0/0 3|1/4/2 |5 *
313/ 0(4/ 1|52
1114 2 530
414,15 2 0 3
212/ 53/ 041
5152031 4

« {0, 3} is a normal subgroup
« Cosets{0,3}, {1,4}, and{2,5}
i ZG/{O,g} = Zg
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FACTOR GROUPS

(EXAMPLE)
Z;/0 2 4/1 3 5
0/0 2 4/1 3 5
212 4 0(3 5 1 *
414 0 2|5 1 3
1/1 3 52 4 0
3/3 5 1(4 0 2
505 1 3|0 2 4

* {0,2,4} is a normal subgroup
e Cosets{0,2,4}, {1,3,5}
* Z6/{0,2,4} = Z,
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HOMOMORPHISMS

A map ¢ of a groupG into a groupG’ is ahomomorphism if
w(ab) = p(a)p(b) forall a,b € G.

Trivial homomorphisndefined byy(g) = €’ for all g € G, wheree’
IS the identity inG’.

A 1-1 homomorphism is amonomorphism

A homomorphism that is onto is apimorphism

A homomorphism that is 1-1 and onto is @omorphism

We use= for isomorphisms.

(Theorem) Le§ be any collection of groups. Theénis an
equivalence relation of.
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PROPERTIES OFHOMOMORPHISMS

If e is the identity inG, theny(e) is the identitye’ in G'.

If a € G, thenp(a™) = p(a)™ L.

If H is asubgroup ofs, theny(H) is a subgroup of+’.

If K’ is a subgroup ofy’, theny~!(K’) is a subgroup of7.

The normal subgrouker ¢ = ¢~ 1({e’}) C G, is thekernel of.

®
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CycLic GROUPS

LetG beagroupandlet € G

H = {a™ | n € Z} is a subgroup otz

It is the smallest subgroup 6f that contains

H is thecyclic subgroup of+ generated by, denoted(a)

If (a) is finite, theorder ofa is |{a)|

a € G generate$s and is agenerator foG' if (a) = G

A groupG is cyclicif it has a generator

Is Z,, cyclic? IsV,?
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FINITELY GENERATED GROUPS

(Theorem) The intersection of subgroups is a subgroup.

LetG beagroupandlet; e Gfori e I

We can take the intersection of all subgroups containing;é&t
obtain a subgroup/

H is the smallest subgroup containing @&l

H is thesubgroup generated HQy; | i € I}

If His G, then{q; | < € I} generate&r and thea; are thegenerators
of G

If there is a finite se{a; | i € I} that generate&, thenG is finitely
generated
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DIRECT PRODUCTS

e LetGq,Go,..., G, be groups.
« The setiq[;_, G; (Cartesian product)

* Binary operation:
(a,l, as, ... ,CLn) X (bl, bg, ce e bn) = (a,lbl, CLQbQ, ce e Cl,nbn)

« Then(][;_, Gi, x) is a group.
« We call it thedirect product othe groups7;.

» Sometimes calledirect sumwith &.
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FUNDAMENTAL THEOREM

(Theorem) Every finitely generated abelian group is isomorphic to
product of cyclic groups of the form

Ligpyy X Ligpy X oo X iy, X L X L X ... X 1,
wherem,; dividesm;.; fori=1,...,r — 1.

e The direct product is unique: the number of factor#a$ unique
and the cyclic group orders,; are unigue.

* Free: basis, rank, vector space
e Torsion: module
» The number of factors dt is theBetti number3(G) of G.

» The orders of the finite cyclic groups are tloesion coefficients of-.
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GROUPPRESENTATIONS

* For each generator, we havééterin analphabet

* Any symbol of the formu™ = aaaa - --a (a string ofn € Z a’s) is a
syllable

A finite string of syllables is avord

 Theempty wordl does not have any syllables

« We may replace@™a™ by ™1™ usingelementary contractions
* Relationsare equations of form = 1 (torsion)

* Notation: (letters : relations)
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SYMMETRY WORK 70

Ladies and gentlemen, herewith | have come to the end of this talk. | hope that |
have not tried your patience too much, and | thank you very much for the attention
you have so kindly given to my fancies.

— M. C. Escher
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