HOMOLOGY

CS 468 – Lecture 6 10/30/2

Afra Zomorodian – CS 468

TIDBITS

• Slow me down!

$$\bullet \ \ \mathbb{X} \stackrel{f}{\underset{g}{\longleftrightarrow}} \ \mathbb{Y}$$

Homeomorphism: $f \circ g = 1_{\mathbb{X}}$ $g \circ f = 1_{\mathbb{Y}}$

Homotopy: $f \circ g \simeq 1_{\mathbb{X}} \quad g \circ f \simeq 1_{\mathbb{Y}}$

- Note dual use of homotopy
- Functorial Question
- Projects: email me!
- Lecture 8 is on Tuesday, November 12 Lecture 10?
- Understanding classes of cycles

OVERVIEW

- Simplicial homology
 - Chains
 - Boundary operator
 - Cycles and boundaries
 - Chain complex
 - Groups!
- Understanding homology
- Invariance
- Euler-Poincaré formula

WHY HOMOLOGY?

- Algebraization of first layer of geometry in structures
- How cells of dimension n attach to cells of dimension n-1
- Less transparent, more machinery
- Combinatorial
- Finite description
- Computable

CHAIN GROUP

- Simplicial complex K
- k-chain: $c = \sum_i n_i[\sigma_i], n_i \in \mathbb{Z}, \sigma_i \in K$ (like a path)
- $[\sigma] = -[\tau]$ if $\sigma = \tau$ and σ and τ have different orientations.
- The kth chain group C_k of K is the free abelian group on its set of oriented k-simplices
- rank $C_k = ?$

BOUNDARY OPERATOR

• The boundary operator $\partial_k : \mathbf{C}_k \to \mathbf{C}_{k-1}$ is a homomorphism defined linearly on a chain c by its action on any simplex $\sigma = [v_0, v_1, \dots, v_k] \in c$,

$$\partial_k \sigma = \sum_i (-1)^i [v_0, v_1, \dots, \hat{v_i}, \dots, v_k],$$

where $\hat{v_i}$ indicates that v_i is deleted from the sequence.

- $\partial_1[a,b] = b a$.
- $\partial_2[a,b,c] = [b,c] [a,c] + [a,b] = [b,c] + [c,a] + [a,b].$
- $\partial_3[a,b,c,d] = [b,c,d] [a,c,d] + [a,b,d] [a,b,c].$

BOUNDARY OPERATOR

- $\partial_1[a,b] = b a$.
- $\partial_2[a,b,c] = [b,c] [a,c] + [a,b] = [b,c] + [c,a] + [a,b].$
- $\partial_3[a,b,c,d] = [b,c,d] [a,c,d] + [a,b,d] [a,b,c].$
- $\partial_1 \partial_2 [a, b, c] = [c] [b] [c] + [a] + [b] [a] = 0.$

BOUNDARY THEOREM

- (Theorem) $\partial_{k-1}\partial_k = 0$, for all k.
- Proof:

$$\partial_{k-1}\partial_{k}[v_{0}, v_{1}, \dots, v_{k}] =$$

$$= \partial_{k-1}\sum_{i}(-1)^{i}[v_{0}, v_{1}, \dots, \hat{v_{i}}, \dots, v_{k}]$$

$$= \sum_{j< i}(-1)^{i}(-1)^{j}[v_{0}, \dots, \hat{v_{j}}, \dots, \hat{v_{i}}, \dots, v_{k}]$$

$$+ \sum_{j>i}(-1)^{i}(-1)^{j-1}[v_{0}, \dots, \hat{v_{i}}, \dots, \hat{v_{j}}, \dots, v_{k}]$$

$$= 0$$

as switching i and j in the second sum negates the first sum.

CHAIN COMPLEX

 The boundary operator connects the chain groups into a chain complex C*:

$$\ldots \to \mathsf{C}_{k+1} \xrightarrow{\partial_{k+1}} \mathsf{C}_k \xrightarrow{\partial_k} \mathsf{C}_{k-1} \to \ldots$$

CYCLE GROUP

- Let c be a k-chain
- If it has no boundary, it is a *k*-cycle (zycle?)
- $\partial_k c = \emptyset$, so $c \in \ker \partial_k$
- The kth cycle group is

$$\mathsf{Z}_k = \ker \partial_k = \{c \in \mathsf{C}_k \mid \partial_k c = \emptyset\}.$$

BOUNDARY GROUP

- Let b be a k-chain
- If b is a boundary of something, it is a k-boundary.
- The *k*th boundary group is

$$B_k = \text{im } \partial_{k+1} = \{ c \in C_k \mid \exists d \in C_{k+1} : c = \partial_{k+1} d \}.$$

RELATIONSHIP

- Let b be a k-boundary.
- Then, $\exists c \in \mathbf{C}_{k+1}$, such that $b = \partial_{k+1}c$.
- What is the boundary of *b*?

$$\partial_k b = \partial_k \partial_{k+1} c = \emptyset,$$

by the boundary theorem.

- That is, every boundary is a cycle!
- What is the point-set theoretic version?

NESTING

- $\mathsf{B}_k \subseteq \mathsf{Z}_k \subseteq \mathsf{C}_k$
- Chains are analogs of paths
- Cycles are analogs of loops
- Boundaries are analogs of bounding loops
- We need a simplicial analog of homotopy!

ADDING CYCLES

- z is a k-cycle
- *b* is a *k*-boundary
- We would like to have z + b be equivalent to z
- That is, if $z_1 z_2 = b$ where b is a boundary, then $z_1 \sim z_2$
- Any boundary would do!

SIMPLICIAL HOMOLOGY

• The kth homology group is

$$\mathsf{H}_k = \mathsf{Z}_k/\mathsf{B}_k = \ker \partial_k/\mathrm{im}\,\partial_{k+1}.$$

- If $z_1 = z_2 + B_k, z_1, z_2 \in Z_k$, we say z_1 and z_2 are homologous
- $z_1 \sim z_2$.

DESCRIPTION

- Homology groups are finitely generated abelian.
- (Theorem) Every finitely generated abelian group is isomorphic to product of cyclic groups of the form

$$\mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2} \times \ldots \times \mathbb{Z}_{m_r} \times \mathbb{Z} \times \mathbb{Z} \times \ldots \times \mathbb{Z},$$

- The kth Betti number β_k of a simplicial complex K is $\beta_k = \beta(\mathsf{H}_k)$, the rank of the free part of H_k .
- Torsion coefficients

INTERPRETATION

- Compactify \mathbb{R}^3 via a one point compactification to get \mathbb{S}^3
- Subcomplexes are torsion-free
- Alexander Duality:
 - $-\beta_0$ measures the number of components of the complex.
 - β_1 is the rank of a basis for the tunnels.
 - β_2 counts the number of voids in the complex.

HOMOLOGY OF 2-MANIFOLDS

2-manifold	H_0	H_1	H_2
sphere	\mathbb{Z}	{0}	\mathbb{Z}
torus	\mathbb{Z}	$\mathbb{Z} \times \mathbb{Z}$	\mathbb{Z}
projective plane	\mathbb{Z}	\mathbb{Z}_2	{0}
Klein bottle	\mathbb{Z}	$\mathbb{Z} imes\mathbb{Z}_2$	{0}

(a) Sphere

(b) Torus

- (c) Projective plane
- (d) Klein bottle

INVARIANCE

- (Hauptvermutung) Any two triangulations of a topological space have a common refinement (Poincaré 1904)
 - True for polyhedra of dimension ≤ 2 (Papakyriakopoulos 1943)
 - True for 3-manifolds (Moïse 1953)
 - False in dimensions ≥ 6 (Milnor 1961)
 - False for manifolds of dimension ≥ 5 (Kirby and Siebenmann 1969)
- Singular homology
- Axiomatization

EULER REVISITED

• Let K be a simplicial complex and $s_i = |\{\sigma \in K \mid \dim \sigma = i\}|$. The Euler characteristic $\chi(K)$ is

$$\chi(K) = \sum_{i=0}^{\dim K} (-1)^i s_i = \sum_{\sigma \in K - \{\emptyset\}} (-1)^{\dim \sigma}.$$

- We have new language!
- Let C_* be the chain complex on K
- $\operatorname{rank}(\mathbf{C}_i) = |\{\sigma \in K \mid \dim \sigma = i\}|$
- $\chi(K) = \chi(\mathbf{C}_*) = \sum_i (-1)^i \operatorname{rank}(\mathbf{C}_i).$

EULER-POINCARÉ

- Homology functors H_{*}
- $H_*(C_*)$ is a chain complex:

$$\dots \to \mathsf{H}_{k+1} \xrightarrow{\partial_{k+1}} \mathsf{H}_k \xrightarrow{\partial_k} \mathsf{H}_{k-1} \to \dots$$

- What is its Euler characteristic?
- (Theorem) $\chi(K) = \chi(C_*) = \chi(H_*(C_*)).$
- $\sum_{i} (-1)^{i} s_{i} = \sum_{i} (-1)^{i} \operatorname{rank}(\mathbf{H}_{i}) = \sum_{i} (-1)^{i} \beta_{i}$
- Sphere: 2 = 1 0 + 1
- Torus: 0 = 1 2 + 1