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TIDBITS

• Lecture 8 is on Tuesday, November 12

• Email me about projects!

• Projects will be November 27th and December 4th.

• November 20th?

• Triangulation of example
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(LAST TIME)

EULER-POINCARÉ

• chain complexC∗:

. . . → Ck+1
∂k+1−−−→ Ck

∂k−→ Ck−1 → . . .

• Homology functorsH∗

• H∗(C∗) is a chain complex:

. . . → Hk+1
∂k+1−−−→ Hk

∂k−→ Hk−1 → . . .

• What is its Euler characteristic?

• (Theorem)χ(K) = χ(C∗) = χ(H∗(C∗)).

•
∑

i(−1)isi =
∑

i(−1)i rank(Hi) =
∑

i(−1)iβi
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OVERVIEW

• Dualities

• Data structures

– Quad-Edge

– Edge-Facet

• Computing Homology

– Reduction Algorithm

– Incremental Algorithm
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DUALITY

a c

d

b

(a) Tetrahedron

a b c d

bcabac ad cd bd

bcdacdabdabc

φ

φ

(b) Poset
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PLATONIC SOLIDS

solid vertices edges faces

tetrahedron 4 6 4

cube 8 12 6

octahedron 6 12 8

dodecahedron 20 30 12

icosahedron 12 30 20
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ORIENTATION

The Optiverse [Sullivan ’98]
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BACKGROUND-FOREGROUND
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COMPLEMENTARITY
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TIME REVERSAL
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DUALITY

• Orientation: inside vs. outside

• Structure: primal vs. dual (poset vs. upside-down poset)

• Complementarity: background vs. foreground

• Time reversal: forward vs. backward
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DIRECTED EDGE

Right

Left

• An edgee has two vertices

• A directededge goes fromOrg(e) to Dest(e)

• An edge separates two cells

• Sym(e) goes in the opposite direction
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QUAD-EDGE

Right

Left

• Rot(e)gives you the dual edge (clockwise) andTor(e)(counter)

• Edgee stores its number and the next clockwise edge with the same
origin: Onext(e)

• A Quad-Edge is Edge[4]: edge, rot, sym, tor

• All operationsO(1)

Afra Zomorodian – CS 468 Lecture 7 - Page 13



OPERATIONS

Right

Left

• Oprev(e) = (Rot◦Onext◦Rot)(e)

• Dnext(e) = (Sym◦Onext◦Sym)(e)

• Lnext(e) = (Tor◦Onext◦Rot)(e)
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ORIENTED TRIANGLES

c

b
a

abc bca cab

acbcbabac

Sym

Sym

Sym
Enext

EnextEnext

Enext

Enext

Enext

• Sym does one transposition (changes orientation)

• Enext does two transpositions (rotate by 60 degrees clockwise)

• Array of sixedge-facetsfor each triangle

• All operationsO(1)
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FNEXT

b

c

d
a

e

• Fnext(bac) = bad

• Fnext(abd) = abc

• Fnext(abc) = abe

• Each store its Fnext
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FACES OF ATETRAHEDRON

b

c

d
a

(a)f = bac

b

c

d
a

(b) Fnext(f) = bad

b

c

d
a

(c) Sym(Fnext(f)) = abd

b

c

d
a

(d) Sym(Fnext(Enext(f))) = cad
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HOMOLOGY

• Thekth homology groupis

Hk = Zk/Bk = ker ∂k/im ∂k+1.

• Compute a basis forker ∂k

• Compute a basis forim ∂k + 1

Ck

Bk−1

Zk−1

Ck−1
δk+1 δkCk+1

0 00

Z k

kB

Z k+1

k+1B
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MATRIX REPRESENTATION

• Boundary homomorphism is linear, so it has a matrix

• ∂k : Ck → Ck−1

• Use oriented simplices as bases for domain and codomain!

• Mk is thestandard matrix representationfor ∂k
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EXAMPLE

d

a
b

c

M1 =



ab bc cd ad ac

a −1 0 0 −1 −1

b 1 −1 0 0 0

c 0 1 −1 0 1

d 0 0 1 1 0


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ELEMENTARY OPERATIONS

• Theelementary row operationsonMk are

1. exchange rowi and rowj,

2. multiply row i by−1,

3. replace rowi by (row i) + q(row j), whereq is an integer and

j 6= i.

• Similar elementary column operationson columns

• Effect: change of bases
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DESCRIPTION

• Homology groups are finitely generated abelian.

• (Theorem) Every finitely generated abelian group is isomorphic to

product of cyclic groups of the form

Zm1 × Zm2 × . . .× Zmr
× Z× Z× . . .× Z,

• βk = β(Hk)

• Torsion coefficients
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INTUITION

• How do we find cycles?

• How do we find boundaries?

• What does a free generator correspond to?

• How does a torsional element appear?
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REDUCTION ALGORITHM

• Like Gaussian elimination, we keep changing the basis to get to the
(Smith) normal form:

M̃k =



b1 0

. . . 0

0 blk

0 0


• lk = rankMk = rank M̃k, bi ≥ 1

• bi|bi+1 for all 1 ≤ i < lk
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REDUCED EXAMPLE

d

a
b

c

M̃1 =



cd bc ab z1 z2

d− c 1 0 0 0 0

c− b 0 1 0 0 0

b− a 0 0 1 0 0

a 0 0 0 0 0



• z1 = ad− bc− cd− ab andz2 = ac− bc− ab form a basis forZ1

• {d− c, c− b, b− a} is a basis forB0
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REDUCED EXAMPLE

M2 =



abc acd

ac −1 1
ad 0 −1
cd 0 1
bc 1 0
ab 1 0



M̃2 =



−abc −acd + abc

ac− bc− ab 1 0
ad− cd− bc− ab 0 1

cd 0 0
bc 0 0
ab 0 0


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NORMAL FORM

M̃k =



b1 0

.
.
. 0

0 blk

0 0



• Description:

1. the torsion coefficients ofHk−1 arebi ≥ 1

2. {ei | lk + 1 ≤ i ≤ mk} is a basis forZk. Therefore,

rank Zk = mk − lk.

3. {biêi | 1 ≤ i ≤ lk} is a basis forBk−1. Equivalently,

rank Bk = rankMk+1 = lk+1.

• βk = rank Zk − rank Bk = mk − lk − lk+1

Afra Zomorodian – CS 468 Lecture 7 - Page 26



IN S3

• Algorithm takesO(m3) operations, but integers can get large

• Subcomplexes are torsion-free, so we don’t need the force!

• k-chain:c =
∑

i ni[σi], ni ∈ Z, σi ∈ K

• Different view,ni arecoefficients

• We can multiply, but not divide (inZ)

• We can also change to other coefficients, such asR, Q, etc.

• Z2 Homology

– restrict to 0,1, so unoriented simplices

– −σ = σ

– Addition issymmetric sum: c + d = (c ∪ d)− (c ∩ d).
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FILTRATION

d

a
b

c

2 cd, ad

d

a
b

cd

a
b

cd

a
b

c

3 ac 4 abc 5 acd

a
b

d

a
b

c

1 c, d,a, b0 ab, bc

• A filtration of a complexK is ∅ = K0 ⊆ K1 ⊆ . . . ⊆ Km = K.

• A filtration is a partial ordering

• Sort according to dimension

• Break other ties arbitrarily

• Algorithm for K = S3
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ALEXANDER DUALITY

• Alexander Duality:

– β0 measures the number of components of the complex.

– β1 is the rank of a basis for thetunnels.

– β2 counts the number ofvoidsin the complex.

• An incremental approach:

– add each simplex in turn

– check to see if we form a new cycle class or destroy one.
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VERTICES

• Vertices always add a new component, soβ0
++. Why?

• Union-find data-structure:

– MAKESET: initializes a set with an item

– FIND: finds the set an element belongs to

– UNION: forms the union of two sets

• Very simple to implement

• O(n) space

• Amortizedα(m) FIND , UNION

• MAKESET for each vertex
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EDGES

(a)β0– – (b) β1++

• (a) Two FINDs, one UNION

• (b) Two FINDs
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TRIANGLES AND TETRAHEDRA

(a)β1– – (b) β2++

• Tetrahedra always fill voids, soβ2
– –
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COMPUTING VOIDS

1 void
tri−−−−−→ 2 voids

tet−−−−−→ 1 void
tet−−−−−→ 1 componentycomplement

y y complement
y

1 component
tri−−−−−→ 2 components

tet−−−−−→ 1 component
tet−−−−−→ 1 voidydual

y y dual
y

1 vertex
edge
←−−−−− 2 vertices

vertex←−−−−− 1 vertex
vertex←−−−−− ∅

• We can always look at thecomplementin S3

• Dualize to get vertices and edges

• Reverse time to get to Union-Find
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INCREMENTAL ALGORITHM

• Three passes:

– One pass to identifynegativeedges

– One reverse dual pass on the complement space to getpositive
triangles

– One pass to compute them all (the Betti numbers)

• O(mα(m))

dim 0 1 2

0 ++

1 – – ++

2 – – ++

3 – –
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