COMPUTING HOMOLOGY:

$$\begin{bmatrix} b_1 & & 0 & \\ & \ddots & & 0 \\ 0 & b_{l_k} & \\ & & & \end{bmatrix}$$

CS 468 – Lecture 7 11/6/2

TIDBITS

- Lecture 8 is on Tuesday, November 12
- Email me about projects!
- Projects will be November 27th and December 4th.
- November 20th?
- Triangulation of example

(LAST TIME) EULER-POINCARÉ

• chain complex C_{*}:

$$\ldots \to \mathsf{C}_{k+1} \xrightarrow{\partial_{k+1}} \mathsf{C}_k \xrightarrow{\partial_k} \mathsf{C}_{k-1} \to \ldots$$

- Homology functors H_{*}
- H_{*}(C_{*}) is a chain complex:

$$\dots \to \mathsf{H}_{k+1} \xrightarrow{\partial_{k+1}} \mathsf{H}_k \xrightarrow{\partial_k} \mathsf{H}_{k-1} \to \dots$$

- What is its Euler characteristic?
- (Theorem) $\chi(K) = \chi(\mathbf{C}_*) = \chi(\mathbf{H}_*(\mathbf{C}_*)).$
- $\sum_{i} (-1)^{i} s_{i} = \sum_{i} (-1)^{i} \operatorname{rank}(\mathsf{H}_{i}) = \sum_{i} (-1)^{i} \beta_{i}$

OVERVIEW

- Dualities
- Data structures
 - Quad-Edge
 - Edge-Facet
- Computing Homology
 - Reduction Algorithm
 - Incremental Algorithm

DUALITY

PLATONIC SOLIDS

solid	vertices	edges	faces
tetrahedron	4	6	4
cube	8	12	6
octahedron	6	12	8
dodecahedron	20	30	12
icosahedron	12	30	20

ORIENTATION

The Optiverse [Sullivan '98]

BACKGROUND-FOREGROUND

COMPLEMENTARITY

TIME REVERSAL

DUALITY

- Orientation: inside vs. outside
- Structure: primal vs. dual (poset vs. upside-down poset)
- Complementarity: background vs. foreground
- Time reversal: forward vs. backward

DIRECTED EDGE

- An edge e has two vertices
- A directed edge goes from Org(e) to Dest(e)
- An edge separates two cells
- Sym (e) goes in the opposite direction

QUAD-EDGE

- Rot(e) gives you the dual edge (clockwise) and Tor(e) (counter)
- Edge e stores its number and the next clockwise edge with the same origin: Onext (e)
- A Quad-Edge is Edge[4]: edge, rot, sym, tor
- All operations O(1)

OPERATIONS

- Oprev $(e) = (\text{Rot} \circ \text{Onext} \circ \text{Rot})(e)$
- $Dnext(e) = (Sym \circ Onext \circ Sym)(e)$
- Lnext $(e) = (\text{Tor} \circ \text{Onext} \circ \text{Rot})(e)$

ORIENTED TRIANGLES

- Sym does one transposition (changes orientation)
- Enext does two transpositions (rotate by 60 degrees clockwise)
- Array of six edge-facets for each triangle
- All operations O(1)

FNEXT

- Fnext (bac) = bad
- Fnext (abd) = abc
- Fnext (abc) = abe
- Each store its Fnext

FACES OF A TETRAHEDRON

(c) Sym (Fnext (f)) = abd

(b) Fnext (f) = bad

(d) Sym (Fnext (Enext (f))) = cad

HOMOLOGY

• The kth homology group is

$$\mathsf{H}_k = \mathsf{Z}_k/\mathsf{B}_k = \ker \partial_k/\mathrm{im}\,\partial_{k+1}.$$

- Compute a basis for $\ker \partial_k$
- Compute a basis for im $\partial k + 1$

MATRIX REPRESENTATION

- Boundary homomorphism is linear, so it has a matrix
- $\partial_k \colon \mathsf{C}_k \to \mathsf{C}_{k-1}$
- Use oriented simplices as bases for domain and codomain!
- M_k is the standard matrix representation for ∂_k

EXAMPLE

$$M_1 = egin{bmatrix} & ab & bc & cd & ad & ac \ \hline a & -1 & 0 & 0 & -1 & -1 \ b & 1 & -1 & 0 & 0 & 0 \ c & 0 & 1 & -1 & 0 & 1 \ d & 0 & 0 & 1 & 1 & 0 \ \end{bmatrix}$$

ELEMENTARY OPERATIONS

- The elementary row operations on M_k are
 - 1. exchange row i and row j,
 - 2. multiply row i by -1,
 - 3. replace row i by (row i) + q(row j), where q is an integer and $j \neq i$.
- Similar elementary column operations on columns
- Effect: change of bases

DESCRIPTION

- Homology groups are finitely generated abelian.
- (Theorem) Every finitely generated abelian group is isomorphic to product of cyclic groups of the form

$$\mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2} \times \ldots \times \mathbb{Z}_{m_r} \times \mathbb{Z} \times \mathbb{Z} \times \ldots \times \mathbb{Z},$$

- $\beta_k = \beta(\mathsf{H}_k)$
- Torsion coefficients

Intuition

- How do we find cycles?
- How do we find boundaries?
- What does a free generator correspond to?
- How does a torsional element appear?

REDUCTION ALGORITHM

• Like Gaussian elimination, we keep changing the basis to get to the (Smith) normal form:

$$\tilde{M}_k = \begin{bmatrix} b_1 & 0 & \\ & \ddots & 0 \\ \hline 0 & b_{l_k} & \\ \hline & 0 & 0 \end{bmatrix}$$

- $l_k = \operatorname{rank} M_k = \operatorname{rank} \tilde{M}_k, b^i \ge 1$
- $b_i | b_{i+1}$ for all $1 \le i < l_k$

REDUCED EXAMPLE

$$ilde{M}_1 = egin{bmatrix} cd & cd & bc & ab & z_1 & z_2 \ \hline d-c & 1 & 0 & 0 & 0 & 0 \ c-b & 0 & 1 & 0 & 0 & 0 \ b-a & 0 & 0 & 1 & 0 & 0 \ a & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- $z_1 = ad bc cd ab$ and $z_2 = ac bc ab$ form a basis for Z_1
- $\{d-c,c-b,b-a\}$ is a basis for B_0

REDUCED EXAMPLE

$$M_2 = egin{bmatrix} abc & acd \ \hline ac & -1 & 1 \ ad & 0 & -1 \ cd & 0 & 1 \ bc & 1 & 0 \ ab & 1 & 0 \ \end{bmatrix}$$

$$\tilde{M}_2 = egin{bmatrix} -abc & -acd + abc \ ac - bc - ab & 1 & 0 \ ad - cd - bc - ab & 0 & 1 \ cd & 0 & 0 \ bc & 0 & 0 \ ab & 0 & 0 \end{bmatrix}$$

NORMAL FORM

- Description:
 - 1. the torsion coefficients of H_{k-1} are $b_i \geq 1$
 - 2. $\{e_i \mid l_k + 1 \leq i \leq m_k\}$ is a basis for \mathbb{Z}_k . Therefore, rank $\mathbb{Z}_k = m_k l_k$.
 - 3. $\{b_i \hat{e}_i \mid 1 \leq i \leq l_k\}$ is a basis for B_{k-1} . Equivalently, $\operatorname{rank} \mathsf{B}_k = \operatorname{rank} M_{k+1} = l_{k+1}$.
- $\beta_k = \operatorname{rank} \mathbf{Z}_k \operatorname{rank} \mathbf{B}_k = m_k l_k l_{k+1}$

In \mathbb{S}^3

- Algorithm takes $O(m^3)$ operations, but integers can get large
- Subcomplexes are torsion-free, so we don't need the force!
- k-chain: $c = \sum_i n_i[\sigma_i], n_i \in \mathbb{Z}, \sigma_i \in K$
- Different view, n_i are coefficients
- We can multiply, but not divide (in \mathbb{Z})
- We can also change to other coefficients, such as \mathbb{R} , \mathbb{Q} , etc.
- \mathbb{Z}_2 Homology
 - restrict to 0,1, so unoriented simplices
 - $-\sigma = \sigma$
 - Addition is symmetric sum: $c + d = (c \cup d) (c \cap d)$.

FILTRATION

- A filtration of a complex K is $\emptyset = K^0 \subseteq K^1 \subseteq \ldots \subseteq K^m = K$.
- A filtration is a partial ordering
- Sort according to dimension
- Break other ties arbitrarily
- Algorithm for $K = \mathbb{S}^3$

ALEXANDER DUALITY

• Alexander Duality:

- β_0 measures the number of components of the complex.
- β_1 is the rank of a basis for the tunnels.
- β_2 counts the number of voids in the complex.
- An incremental approach:
 - add each simplex in turn
 - check to see if we form a new cycle class or destroy one.

VERTICES

- Vertices always add a new component, so β_0^{++} . Why?
- Union-find data-structure:
 - MAKESET: initializes a set with an item
 - FIND: finds the set an element belongs to
 - UNION: forms the union of two sets
- Very simple to implement
- O(n) space
- Amortized $\alpha(m)$ FIND, UNION
- MAKESET for each vertex

EDGES

(a)
$$\beta_0$$
--

(b)
$$\beta_1$$
 ++

- (a) Two FINDs, one UNION
- (b) Two FINDs

TRIANGLES AND TETRAHEDRA

• Tetrahedra always fill voids, so β_2 ---

COMPUTING VOIDS

- We can always look at the complement in \mathbb{S}^3
- Dualize to get vertices and edges
- Reverse time to get to Union-Find

INCREMENTAL ALGORITHM

- Three passes:
 - One pass to identify negative edges
 - One reverse dual pass on the complement space to get positive triangles
 - One pass to compute them all (the Betti numbers)
- $O(m\alpha(m))$

dim	0	1	2
0	++		
1		++	
2			++
3			