MORSE THEORY

CS 468 – Lecture 9 11/20/2

PRESENTATIONS

- November 27th:
 - Surface Flattening (Jie Gao)
 - Simplicial Sets (Patrick Perry)
 - Complexity of Knot Problems (Krishnaram Kenthapadi)
- December 4th
 - Tangent Complex (Yichi Gu)
 - Irreducible Triangulations (Jon McAlister)
 - Homotopy in the Plane (Rachel Kolodny)

SHAPE

EXCURSIONS

OVERVIEW

- Relationship between Geometry and Topology
- Tangent Spaces
- Derivatives
- Critical points
- Persistence

TANGENT SPACE $T_p(\mathbb{R}^3)$

- M is a smooth, compact, 2-manifold without boundary
- $\mathbb{M} \subset \mathbb{R}^3$ is embedded (not necessary, extends)
- A tangent vector v_p to \mathbb{R}^3 consists of two points of \mathbb{R}^3 : its vector part v, and its point of application p.
- The set $T_p(\mathbb{R}^3)$ consists of all tangent vectors to \mathbb{R}^3 at p, and is called the tangent space of \mathbb{R}^3 at p.

TANGENTS SPACE $T_p(\mathbb{M})$

- Let p be a point on \mathbb{M} in \mathbb{R}^3 .
- A tangent vector v_p to \mathbb{R}^3 at p is tangent to \mathbb{M} at p if v is the velocity of some curve in \mathbb{M} .
- The set of all tangent vectors to M at p is called the tangent plane of M at p and is denoted by $T_p(\mathbb{M})$.

TANGENT PLANE

- A patch is the inverse of a chart.
- Let $p \in \mathbb{M} \subset \mathbb{R}^3$, and let φ be a patch in \mathbb{M} such that $\varphi(u_0, v_0) = p$.
- A tangent vector v to \mathbb{R}^3 at p is tangent to \mathbb{M} iff v can be written as a linear combination of $\varphi_u(u_0, v_0)$ and $\varphi_v(u_0, v_0)$.
- $T_p(\mathbb{M})$ is the best linear approximation of the surface M near p.

FUNCTIONS ON MANIFOLDS

- A vector: direction for moving
- Real valued smooth function $h: \mathbb{M} \to \mathbb{R}$.
- How does h vary in direction v_p ?

DERIVATIVES

- A vector field or flow on V is a function that assigns a vector $v_p \in T_p(\mathbb{M})$ to each point $p \in \mathbb{M}$.
- The derivative $v_p[h]$ of h with respect to v_p is the common value of $(d/dt)(h \circ \gamma)(0)$, for all curves $\gamma \in \mathbb{M}$ with initial velocity v_p .
- The differential dh_p of $h: \mathbb{M} \to \mathbb{R}$ at $p \in \mathbb{M}$ is a linear function on $T_p(\mathbb{M})$ such that $dh_p(v_p) = v_p[h]$, for all tangent vectors $v_p \in T_p(\mathbb{M})$.
- A differential converts vector fields to real-valued functions

CRITICAL POINTS

- Travel in all directions in $T_p(\mathbb{M})$
- A point $p \in \mathbb{M}$ is critical for map $h : \mathbb{M} \to \mathbb{R}$ if dh_p is the zero map.
- Otherwise, p is regular.

DEGENERACIES

- Let x, y be a patch on \mathbb{M} at p.
- The Hessian of $h: \mathbb{M} \to \mathbb{R}$ is:

$$H(p) = \begin{bmatrix} \frac{\partial^2 h}{\partial x^2}(p) & \frac{\partial^2 h}{\partial y \partial x}(p) \\ \frac{\partial^2 h}{\partial x \partial y}(p) & \frac{\partial^2 h}{\partial y^2}(p) \end{bmatrix}.$$

- Basis $(\frac{\partial}{\partial x}(p), \frac{\partial}{\partial y}(p))$ for $T_p(\mathbb{M})$.
- A critical point $p \in \mathbb{M}$ is non-degenerate if the Hessian is non-singular at p, i.e. $\det H(p) \neq 0$.
- Otherwise, it is degenerate.

Morse Functions

- A smooth map $h: \mathbb{M} \to \mathbb{R}$ is a Morse function if all its critical points are non-degenerate.
- Any twice differentiable function h may be unfolded to a Morse function.
- As close to h as we specify!
- Morse functions are dense

Morse Lemma

(a)
$$x^2 + y^2$$

(b)
$$-x^2 + y^2$$

(c)
$$x^2 - y^2$$

$$(d) -x^2 - y^2$$

INDICES

• (Lemma) It is possible to choose local coordinates x, y at a critical point $p \in \mathbb{M}$, so that a Morse function h takes the form:

$$h(x,y) = \pm x^2 \pm y^2 \tag{1}$$

- The index i(p) of h at critical point $p \in \mathbb{M}$ is the number of minuses.
- Equivalently, the index at p is the number of the negative eigenvalues of H(p).
- A critical point of index 0, 1, or 2, is called a minimum, saddle, or maximum, respectively.

MONKEY SADDLE

Unfolding

PL FUNCTIONS

- Let K be a triangulation of a compact 2-manifold without boundary \mathbb{M} .
- Let $h : \mathbb{M} \to \mathbb{R}$ be a function that is linear on every triangle.
- The function is defined by its values at the vertices of K.
- Assume $h(u) \neq h(v)$ for all vertices $u \neq v \in K$.
- Sometimes called a height function over a 2-manifold.

STARS

- Recall: the star of a vertex u in a triangulation K is $\operatorname{St} u = \{ \sigma \in K \mid u \leq \sigma \}.$
- The lower and upper stars of u for a height function h are

$$\underline{\operatorname{St}} u = \{ \sigma \in \operatorname{St} u \mid h(v) \leq h(u), \forall \text{ vertices } v \leq \sigma \}$$

$$\overline{\operatorname{St}} u = \{ \sigma \in \operatorname{St} u \mid h(v) \geq h(u), \forall \text{ vertices } v \leq \sigma \}$$

- Suppose u is a maximum. What's $\underline{St} u$? What's $\overline{St} u$?
- $K = \dot{\bigcup}_u \underline{\operatorname{St}} u = \dot{\bigcup}_u \overline{\operatorname{St}} u$.

PL STARS

FILTRATIONS

- Sort the n vertices of K in order of increasing height to get the sequence $u^1, u^2, \ldots, u^n, h(u^i) < h(u^j)$, for all $1 \le i < j \le n$.
- Let K^i be the union of the first i lower stars, $K^i = \bigcup_{1 \le j \le i} \underline{\operatorname{St}} \, u^j$.
- Same idea with upper stars
- Recall $\chi = v e + t = \beta_0 \beta_1 + \beta_2$

LEVELS OF TORUS

MINIMUM

- St $u^i = u^i$, so a minimum vertex is a new component and $\chi^i = \chi^{i-1} + 1$.
- $\beta_0^i = \beta_0^{i-1} + 1$, $\beta_1^i = \beta_1^{i-1}$, $\beta_2^i = \beta_2^{i-1}$
- Therefore, $\chi^i = \beta_0^{i-1} + 1 \beta_1^{i-1} + \beta_2^{i-1} = \chi^{i-1} + 1$
- So, a minimum creates a new 0-cycle and acts like a positive vertex in the filtration of a complex.
- The vertex is unpaired at time *i*.

REGULAR

- St u^i is a single wedge, so $\chi^i = \chi^{i-1} + 1 1 = \chi^{i-1}$.
- $\underline{\operatorname{St}} u^i \neq \emptyset$ so $\beta_0^i = \beta_0^{i-1}$
- $\overline{\operatorname{St}} u^i \neq \emptyset$ so $\beta_2^i = \beta_2^{i-1}$ (also duality!)
- Using Euler-Poincaré, we get $\beta_1^i = \beta_1^{i-1}$.
- No topological changes!
- All the cycles created at time i are also destroyed at time i.
- The positive and negative simplices in $\underline{St} u^i$ cancel each other, leaving no unpaired simplices.

SADDLE

- St u^i has two wedges, bringing in two more edges than triangles.
- $\chi^i = \chi^{i-1} + 1 2 = \chi^{i-1} 1$.
- If this saddle connects two components, it destroys a 0-cycle and $\beta_0^i = \beta_0^{i-1} 1$.
- Otherwise, it creates a new 1-cycle and $\beta_1^i = \beta_1^{i-1} + 1$.
- All the simplices in a saddle are paired, except for a single edge whose sign corresponds to the action of the saddle.
- We have $\chi^i = \chi^{i-1} 1$ in either case.

MAXIMUM

- $\underline{\operatorname{St}} u^i = \operatorname{St} u^i$ and has the same number of edges and triangles.
- So, $\chi^i = \chi^{i-1} + 1$ for the single vertex.
- In our case, one global minimum
- If global minimum, $\beta_2^i = \beta_2^{i-1} + 1 = 1$.
- Otherwise, the lower star covers a 1-cycle and $\beta_1^i = \beta_1^{i-1} 1$.
- Single unpaired triangle (positive or negative)
- We have $\chi^i = \chi^{i-1} + 1$ in both cases.

CORRESPONDENCE

critical	unpaired	action
minimum	vertex	$eta_{0^{++}}$
saddle	edge	$\beta_{0^{}}$ or $\beta_{1^{++}}$
maximum	triangle	$\beta_{1^{}}$ or $\beta_{2^{++}}$

- Correspondence allows us to talk about persistent critical points
- Let m_i be the number of index i critical points in K

•
$$\chi(K) = \sum_{i} (-1)^{i} s_{i} = \sum_{i} (-1)^{i} \beta_{i} = \sum_{i} (-1)^{i} m_{i}$$

CANCELLATION

- Pairs of critical points annihilate each other
- Inverse unfolding plus smoothing
- Need additional structure (Morse-Smale Complex) to do this geometrically