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Abstract

We show that contour trees can be computed in all dimensions by a simple algorithm that

merges two trees. Our algorithm extends, simpli�es, and improves work of Tarasov and Vyalyi

and of van Kreveld et al.

1 Introduction

Many imaging technologies and scienti�c simulations produce data in the form of sample points

with intensity values. One way to visualize this data is to convert it into geometric models by

thresholding or by taking level sets. In this paper, we focus on one tool that can help in choosing

threshold values or in interactive exploration of such data: the contour tree.

Contour trees were used by van Kreveld et al. [28] to compute isolines on terrain maps in

geographic information systems. With terrain maps, a surface model is computed from elevation

values at sample points in the plane. Isolines, often called contours, are the curves that can be

seen on a topographic map, and consist of points at a given height. Contours can be traced from

a surface model relatively easily, given a starting point, or \seed" on each. Van Kreveld et al. use

the contour tree to generate \seed sets" for any query height value, guaranteeing that each contour

has at least one seed.

We use the contour tree to compute seed sets, to trace whole or partial isosurfaces in IR3, and to

determine important values of the height function where topological changes occur in the level sets;

these changes may correspond to important phenomena in the data studied. While van Kreveld et

al. do discuss the extension of their approach to IR3, their algorithm runs in quadratic time, which

is prohibitive.

Tarasov and Vyalyi [26] gave an O(N logN) algorithm for computing contour trees in IR3, where

N is the number of simplices in the decomposition of the data. We describe their algorithm and

the handling of singularities in more detail later, but their approach can multiply the number of

simplices by a factor of 360, and is diÆcult to implement.

Our algorithm for contour trees begins with Tarasov and Vyalyi's idea of three passes through

the data, but makes the following simpli�cations and improvements. The �rst two sweeps do

not maintain level sets, but construct \join" and \split" trees, which store partial topological

information about the data. We then apply a simple merge procedure to obtain the contour tree.
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The resulting algorithm handles multiple singularities and extends to all dimensions. Because there

are some applications in which multiple singularities must be replaced by simple singularities, we

also observe that Tarasov and Vyalyi's approach to resolving singularities can be extended to all

dimensions.

After reviewing isosurfaces in sec. 2, we de�ne contour trees and look at their properties in

sec. 3. We then give our algorithm to construct contour trees in sec. 4. Finally, in sec. 5, we extend

Tarasov and Vyalyi's resolution of singularities to arbitrary dimensions. We state our conlusions

in sec. 6, and give some future directions in sec. 7

2 Isosurfaces

Suppose that we are given a set of n points fp1; p2; : : : ; png in a �xed-dimensional space IRd, with

corresponding scalar measurements fh1; h2; : : : ; hng. We assume that the hi are unique, perhaps

by perturbation of our data using simulation of simplicity [10].

To extend the data to the entire space, we choose a mesh M with vertex set fp1; p2; : : : ; png.

Meshes used for isosurfaces include regular rectilinear meshes (also known as voxels or cuberilles) [1,

18, 19, 13, 9, 29, 30, 8, 16, 15], regular simplicial meshes [29, 28, 26, 31], and irregular meshes [18, 14].

We then choose a continuous function f to interpolate at points not in fp1; p2; : : : ; png, and require

that f(pi) = hi: this is typically a piecewise-linear function. For convenience, we use height to refer

to the function value.

A level set of f at some height h is the set fx 2 IRd
j f(x) = hg, and may consist of 0, 1, or

more connected components. In 2-D, these connected components are called isolines, and in 3-D,

isosurfaces. We use contour as a general term for a connected component of a level set in a space

of arbitrary dimension.

If we think of the height f(x) as time and watch the evolution of the level sets of f over time,

then we see contours appear, split, change genus, join, and disappear. The contour tree, which we

de�ne in sec. 3, is a graph that tracks contours of the level set as they split and appear or join and

disappear.

2.1 Previous Work on Isosurfaces

Isosurfaces have been widely used for segmentation and rendering, in �elds such as medical imag-

ing [1, 18, 19], 
uid dynamics [18], and X-ray crystallography [13, 9]. The principal algorithm

used to generate isosurfaces is the \Marching Cubes" algorithm [19], which computes the desired

level set by �nding the intersection of the level set with each cell of the mesh. This algorithm

has several disadvantages: the isosurface generated may have visible cracks, the time required to

render an isosurface is O(N) in the number of cells, and the algorithm fails to distinguish between

the contours of the level set. The �rst disadvantage, that visible cracks appear in the generated

model, can be dealt with by Nielsen and Hamann's Asymptotic Decider [21], or by subdividing the

cells into simplices (in IR3, tetrahedra). As we see in sec. 3.1, a simplicial mesh is required for the

contour tree algorithm, so we choose to subdivide the cells into simplices.

As regards the run-time, various techniques have been proposed to reduce the cost of generating

an individual isosurface to as little as O(logN + k), where k is an output-sensitive term. These

techniques include octrees [30], span space [18], interval trees [9, 7, 8], extrema graphs [16, 15],

segment trees [14, 2], and contour trees [28, 3]. Of these, octrees, span space, and interval trees
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Figure 1: Level Sets of f as f(x) decreases

require large run-time data structures (�(N) in the size of the mesh), and retain the inability

to distinguish contours of the level set. One reason for this is that these techniques fail to take

advantage of the fact that each contour must be connected: each intersection of a cell and a contour

is treated as a separate object.

In contrast, the extrema graph, segment tree, and contour tree approaches take advantage of

the connectivity of individual contours. If we start at a cell known to intersect the isosurface (a

seed cell), it is possible to \follow" the contour out the faces of the cell to adjacent cells, and repeat

until a complete contour has been traced. The task remaining is then to specify suÆcient seed cells

to guarantee that any contour at any isovalue intersects at least one of the seed cells. This can be

done interactively [14], heuristically (extrema graphs [16, 15]), by a mark-and-sweep algorithm [2],

or using contour trees [28, 3].

3 Contour Trees

The contour tree was introduced by Boyell and Ruston [5], as a summary of the evolution of

contours on a map (i.e. in 2-D), and used by Freeman and Morse to �nd terrain pro�les in a contour
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map [11]. It has been used for image processing and geographic information systems [12, 17, 24, 25],

but principally in 2-D applications. It appears that van Kreveld et al. were the �rst to identify its

applicability to isosurfaces as well as isolines [28]. Since the contour tree is related to the �eld of

Morse theory, we will make some remarks about Morse theory in sec. 3.1, then give a de�nition of

the contour tree in sec. 3.2, a de�nition of a related structure called the augmented contour tree

in sec. 3.3, and a summary of previous work in sec. 3.4.

3.1 Morse Theory

The �eld of Morse theory [4, 20, 23] studies the changes in topology of level sets as the height h

is varied. Points at which the topology of the level sets change are called critical points. Morse

theory requires that the critical points are isolated { i.e. that they occur at distinct points and

values. A function that satis�es this condition is called a Morse function. All points other than

critical points are called regular points and do not a�ect the number or genus of the contours.

In order to take advantage of this, we choose our mesh M to be a simplicial mesh, and our

function f to be a piecewise-linear function such that:

1. f is a linear function within each simplex, and

2. f(pi) = hi for all i = 1; : : : ; n.

This de�nition of f , as a linear interpolant over a simplicial mesh with unique data values

at vertices, ensures that f is a Morse function, and that the critical points occur at vertices of

the mesh [4]. This makes it possible to deal with the continuously-de�ned function f using a

combinatorial approach. Note that for generating isosurfaces, we are interested in a subset of the

Morse critical points: we do not care about changes of topological genus (e.g. from a disk to

a torus), since these changes do not a�ect the number of contours, or the number of seed cells

required.

If we take a small example of a function de�ned in IR3 (Fig. 1), with the height decreasing as

we progress from (a) - (f), we see contours appear, split, change genus, join, and disappear. In

particular, the level set evolves from four sticks (a), to two rings (between (b) and (c)), to two

cushions(c), to one surface (d), which gradually turns into two nested surfaces as the \inside" and

\outside" separate (between (e) and (f)). Finally (although we cannot see this), the inner surface

collapses to a point, leaving us with a single surface once more.

3.2 The Contour Tree

The contour tree is a graph that tracks contours of the level set as they split, join, appear, and

disappear. Fig. 2 shows the contour tree for the same small example illustrated in Fig. 1. Starting

at the global maximum, four small contours appear in sequence (10, 9, 8, 7): these correspond

to the four leaves at the top of the contour tree. The surfaces join (6, 5) in pairs, forming larger

contours, which quickly become rings. These rings then 
atten out into cushions, which join (4) to

form a single contour. This contour gradually wraps around a hollow core, and pinches o� at (3),

splitting into two contours: one faces inwards, the other outwards. The inward contour contracts

until it disappears at (2): the outward contour expands until it reaches the global minimum (1).

In the foregoing description, we refer to the evolution of level sets as we vary the height. We

make this \evolution" more precise by de�ning an equivalence relation between two contours. We

4



1

2

3

4

5

6

7

8
9

10

a

b

c

d
e

f

Figure 2: Contour tree for Figure 1

de�ne a join to be a critical point x with an �-neighbourhood that intersects at least 2 contours

at f(x) + Æ, where Æ, � are suitably small values. A split is then a critical point x with an �-

neighbourhood that intersects at least 2 contours at f(x)� Æ. Note that a local maximum x must

have an �-neighbourhood that does not intersect any contours at f(x)+Æ. Similarly, a local minimum

x must have an �-neighbourhood that does not intersect any contours at [f(x) � Æ]. Collectively,

we refer to joins, splits, local maxima and local minima as critical points: these critical points are

a subset of the critical points in Morse theory sec. 3.1. We then de�ne the equivalence relation as

follows:

De�nition 3.1 Let 
; 
0 be contours at heights h; h0, respectively, with h < h0. Then 
; 
0 are

equivalent (
 � 
0) if all of the following are true:

1. neither 
 nor 
0 passes through a join, split, local maximum or local minimum,

2. 
; 
0 are in the same connected component � of fx : f(x) � hg, and there is no join xi 2 �

such that h < hi < h0, and

3. 
; 
0 are in the same connected component � of fx : f(x) � h0g, and there is no split xi 2 �

such that h < hi < h0.

We refer to the equivalence classes of this relation as contour classes. Contours that do not

pass through critical points belong to contour classes that map 1-1 with open intervals (hi; hj),

where xi; xj are critical points and xi < xj . We describe a contour class as being created at j, hj ,

or xj, and being destroyed at i, hi, or xi, thus preserving the intuitive description of a sweep from

high to low values. Contours that do pass through critical points must be the sole members of

the contour classes to which they belong (i.e. �nite contour classes). This correspondence between

critical points and �nite contour classes, and between open intervals and in�nite contour classes,

leads to the de�nition of the contour tree for a simplicial mesh:
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Figure 3: A small 2-D example, with the same contour tree as Fig. 1

De�nition 3.2 We de�ne the contour tree, illustrated in Fig. 2, as a graph (V;E). Following van

Kreveld et al. [28] we refer to V and E as supernodes and superarcs, respectively.

The set V contains a supernode for each �nite contour class (i.e., for each critical point.) We

distinguish two types of supernodes: An interior supernode corresponds to a critical point at which

at least one in�nite contour class is created, and at least one in�nite contour class is destroyed. A

leaf supernode corresponds to a local maximum, at which an in�nite contour class is created, or a

local minimum, at which an in�nite contour class is destroyed.

The set E contains a superarc for each in�nite contour class. Speci�cally, if and only if an

in�nite contour class is created at the critical point corresponding to the supernode u and destroyed

at the critical point corresponding to v, then the superarc (u; v) 2 E.

3.3 The augmented contour tree

For some purposes, such as the generation of isosurfaces, information about vertices that are not

critical points is also required. We augment the contour tree with the remaining points to produce

an augmented contour tree. For each vertex xi in the mesh, take the contour 
i to which xi belongs,

and insert xi into the superarc representing the contour class [
i]. Again following van Kreveld et

al., we refer to the resulting vertices and edges of the graph as arcs and nodes. Note that this

replaces the superarcs between supernodes with a path consisting of arcs and nodes.

In Fig. 3, we show a small 2-D example with the same contour tree (Fig. 2) as Fig. 1. The

vertices with non-integer labels are not critical points: Fig. 4(a) shows the augmented contour

tree for this mesh. Clearly, if we know the nodes and arcs, we can generate the supernodes and

superarcs. We simplify the presentation of the algorithm by working only with the nodes and arcs,

and use \contour tree" to refer to the augmented contour tree for the balance of this paper (see

Fig. 4(a) for an example).
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Figure 4: A small 2-D example, continued

3.4 Previous work

Van Kreveld et al. [28] reported the �rst eÆcient algorithm for constructing contour trees. This

algorithm performs the extraction in O(N logN) time in 2-D data �elds, and O(N2) time in higher

dimensions, where N is the number of simplices (triangles) in the mesh of the n data points. The

algorithm performs a sweep from low to high value, maintaining each contour, and examines the

data set locally to determine when saddle points are encountered and how to deal with them.

Multi-saddle points are treated as a set of ordinary saddle points. The most time-consuming step

is merging contours. In the plane, the running time is reduced to O(N logN) by always merging a

smaller contour into a larger; a coordinated search in both contours is used to determine which is

the smaller.

Tarasov and Vyalyi [26] presented a O(N logN) algorithm for 3-D data �elds. Their algorithm

performs three sweeps: one sweep to identify joins, a second to identify splits, and a third to

combine the results of the two sweeps. Again, the level set is maintained at all times during

the sweep. Multi-saddle points are dealt with by a complicated preprocessing step (see sec. 5).

Running time is kept to O(N logN) by a variation of the method used by van Kreveld et al. in the

plane. Finally, boundary e�ects at the edge of the dataset are handled by special cases inside the

algorithm.

In both algorithms, two factors contribute to the runtime: the initial sort takes O(n logn) time,

and maintaining the level sets takes O(N logN) time. Bounds on the number of simplices, N , are

N = 
(n) and N = O(ndd=2e), for a mesh with n vertices in d dimensions. In dimensions greater

than 2, the di�erence between N and n can become signi�cant for irregular meshes. It is, however,

always possible to construct a mesh in any �xed dimension such that N = �(n) (for example, a

regular grid). As a result, the di�erence between n and N is, in most instances, a small constant

factor.
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4 The contour tree algorithm

We propose an improved algorithm for constructing the contour tree for a real-valued �eld F

interpolated over a simplicial mesh of n vertices and N simplices, with the following characteristics:

1. Time requirements of O(n log n+N�(N)) for constructing augmented contour trees, in any

number of dimensions,

2. Space requirements of O(N) for the mesh and O(n) additional working storage,

3. Simple treatment of boundary e�ects, and

4. Simple treatment of multi-saddle points.

The algorithm has two stages: in the �rst stage, we build a join tree and a split tree to identify

contour joins and splits (sec. 4.1). In the second stage, we merge these two trees to obtain the

contour tree (sec. 4.2).

Although the algorithm applies to any arbitrary dimension, the illustrations are in two dimen-

sions for clarity (see Fig. 3 for our example).

4.1 Join and split trees

In this subsection, we introduce the join tree and split tree for a height graph G (a graph with

associated heights). We demonstrate that the join tree JM of the simplicial mesh M used to de�ne

our height �eld F is identical to the join tree JC of the contour tree C of F . We then present an

algorithm for constructing JC(= JM ) in O(n log n+N�(N)) time and O(n) space.

The join tree is a graph that encapsulates all joins in the contour tree; the corresponding split

tree encapsulates all splits. These trees are dual if we negate all heights, so we will examine only

the join tree in detail.

We de�ne a height graph to be any graph G with heights fhig associated with the vertices fxig.

For example, the mesh M underlying our function f is a height graph. We use G(> hi) to refer

to the subgraph of G induced by the vertices with height > hi. Although the join and split trees

are notionally on the same set of vertices as G, we adopt the convention that if xi is a vertex in G,

then yi is the corresponding vertex in the join tree.

De�nition 4.1 The join tree JG of a height graph G is the graph on the vertices y1; : : : ; ykGk in

which two vertices yi and yj, with hi < hj, are connected when:

1. xj is the smallest-valued vertex of some connected component � of G(> hi), and

2. xi is adjacent in G to a vertex of �.

Fig. 4 (b) and (c) show the join and split trees for the mesh in Fig. 3.

In order for the join tree to be useful, we must relate it to the height �eld that we are studying:

we do so by showing that JC = JM , i.e. that the contour tree C and the meshM have the same join

tree. We need a couple of preliminary lemmas to show that the connected components of C(> hi)

and M(> hi) are identical.

Lemma 4.2 xi and xj belong to the same component of M(> hk) precisely when they belong to

the same component of fx : f(x) = hkg.
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Proof: Suppose that xi and xj belong to the same component ofM(> hk) for any k. Therefore,

there must be a path in M connecting xi and xj such that each vertex on the path has height

> hk. But sinceM is embedded in the volume over which f is de�ned, this path also connects xi
and xj in the set fx : f(x) > hk, so xi and xj belong to the same component of fx : f(x) > hkg.

Now suppose that xi and xj belong to the same component of M(> hk). Then xi and xj are

connected in fx : f(x) > hkg by some path P . If we trace the path P through the simplices of

the mesh M (as in Fig. 5), we can \push" P up to edges of the simplex that are above the value

hk. (see Fig. 5). This gives us a path P 0 connecting xi and xj in the mesh M . It follows that

xi and xj belong to the same component of M(> hk) exactly when they (xi and xj) belong to

the same component of fx : f(x) > hkg.

Lemma 4.3 For each component in C(> hk), there exists a component in M(> hk) containing

exactly the same vertices (and vice versa).

Proof: Proof is by �nite induction, starting with the highest vertex xn, for which the property

is trivially true. For convenience, assume that the vertices are indexed in sorted order: i.e., that

h1 < h2 : : : hn.

Assuming that the hypothesis is true for k � i � n, consider the vertex xk�1: the only

di�erence between the components of M(> hk) and M(> hk�1) is that the arcs from xk to

adjacent, higher vertices have been added to the latter. We break the proof into three cases,

based on the type of vertex that xk is: local maxima, joins, and other points:

If xk is a local maximum, then it has no arcs leading upwards, and there are no edges added

to M(> hk) to obtain M(> hk�1). From Def. 3.2, a local maximum only has one edge, to a

lower vertex. Thus no edges are added to C(> hk) to obtain C(> hk�1), and the hypothesis

follows.

If xk is a join, then let xkxj be any edge incident to xk in C(> hk�1). From sec. 3.3, xk
and xj both either belong to some superarc, or are endpoints of it. Since the superarcs and

supernodes correspond to contour classes, we take the union of these contour classes, and obtain
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a connected set in the original space of points with values between hk and hj . Therefore, there

is a path P from xk to xj in this set.

But this set is contained in some component 
 of fx : f(x) > hk�1g. So, by Lemma 4.2,

xk and xj must also be connected in M(> hk�1). This is true for each edge xkxj in C (with

hk < hj). Also, the components of M(> hk) and fx : f(x) > hkg have the same vertex sets

by the induction hypothesis. Thus, it follows that xk is connected to the same components of

M(> hk) in M as in C.

As a result, the component of M(> hk�1) to which xk belongs will correspond directly to

the component of fx : f(x) > hk�1g to which xk belongs. Components to which xk does not

connect will be una�ected, so we conclude that the components of M(> hk�1) and C(> hk�1)

contain the same vertices, as required.

If xk is neither a local maximum nor a join, then it must be adjacent to exactly one com-

ponent of M(> hk), and an argument similar to that of Case II applies to show that the

components of M(> hk�1) and C(> hk�1) contain the same vertices.

Theorem 4.4 The contour tree C and the mesh M have the same join tree (i.e. JC = JM .

Proof: In Def. 4.1, I de�ned the join tree of a height graph G in terms of the components of

G(> hi). By Lemma 4.3, these components are identical in C and M , and we saw in the proof

of Lemma 4.3 that xi will be connected to the same components of C(> hi) and M(> hi). It

follows immediately from Def. 4.1 that JC = JM .

To construct JM (= JC), we use Tarjan's union-�nd algorithm [27], which computes the con-

nected components of a graph G by considering one edge at a time. For each edge, we consider

whether the two vertices on the edge belong to the same set. If they do not, then a union operation

is performed to merge the two sets. This has the e�ect of progressively computing the connectivity

of successively larger subsets of the edges of the graph. However, it is notable that the edges do

not need to be considered in any particular order. Thus, if we consider the edges of the mesh M

in decreasing order of the lower vertex, we progressively construct M(> hk) for each k. This leads

to the following algorithm:

Algorithm 4.1 Algorithm To Construct JM :

In the join-tree algorithm (Fig. 6), we use two arrays, Component and LowestVertex. The �rst,

Component, is used for the union-�nd operations, while the second, LowestVertex, is used to store

the lowest vertex for each union-�nd component: this allows us to add edges to the join tree

at each step. This algorithm requires a sort (O(n log n)), followed by the union-�nd algorithm

(O(N +M�(M))), where N is the number of edges in the mesh, and M is the number of union-

�nd merges performed (at most equal to the number of local maxima in the mesh). Note that

M +m � t � 2(M +m)� 1, where t is the number of supernodes in the contour tree, and M;m

are the number of local maxima and minima respectively. Thus, we can express the bound for

constructing the join and split trees more precisely as O(n log n+N + t�(t)).

4.2 Merging to form the contour tree

In this section, we give the main contribution of this paper: a simple algorithm to merge join and

split trees. First we give an overview of the concept behind the merge algorithm, de�ne some
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Algorithm to compute JC = JM:

Input: the mesh M, with vertices x1 : : : xn in sorted order (i.e. h1 < h2 : : : hn)

Output: the join tree JC, with vertices y1 : : : yn

1. for i := n downto 1 do:

(a) Component[i] := i

(b) LowestVertex[i] := yi

(c) for each vertex xj adjacent to xi

i. if (j < i) or (Component[i] = Component[j]) skip xj

ii. UFMerge(Component[i], Component[j])

iii. AddEdgeToJoinTree(yi, LowestVertex[Component[j]])

iv. LowestVertex[Component[j]] := yi

Figure 6: Algorithm to Construct a Join Tree
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Figure 7: Vertex reductions applied to vertices 2 and 7

terms, and provide a recursive proof that the merge algorithm works. We then give a non-recursive

implementation of the algorithm that takes O(n) time.

To reconstruct the contour tree C from the join tree JC and split tree SC , we identify a leaf

xi of C and its incident edge xixj. We delete xi from C, JC and SC to produce Cnxi, JCnxi
and

SCnxi
. We repeat the process until all edges of C have been identi�ed.

Before embarking on the reconstruction, we de�ne some terms that we rely on. We use up-arc

and down-arc to refer to arcs leading up and down from a given vertex, and up-degree(Æ+) and

down-degree(Æ�) to refer to the number of up- and down- arcs at a given vertex. Note that the up-

degree in JC is identical to the up-degree in C, and that the down-degree in JC is always 1, except

at the global minimum vertex, where it is 0. Similarly, the split tree has identical down-degree to

C, and up-degree of 1 except at the global maximum. It follows immediately that we can identify

leaves of C by examining the up-degree in JC and the down-degree in SC . We refer to leaves with

up-degree of 0 as upper leaves and those with down-degree of 0 as lower leaves.

When deleting a vertex xi from C, we preserve connectivity by contracting the incident arcs into

a single arc (see Fig. 7). This operation is called reduction to distinguish it from the simple removal
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of a vertex from a graph. Theorem 4.8 will then show that applying the reduction operation on

the join and split trees gives the join and split trees of the new, smaller graph.

De�nition 4.5 De�ne C 	 xi, the reduction of a graph C by a vertex xi whose up-degree and

down-degree are both � 1, to be:

1. If xi has arcs xixj up and xixk down in C, then: C 	 xi = Cnxi [ xjxk

2. Otherwise, C 	 xi = Cnxi

Lemma 4.6 If xi is an upper leaf, and yiyj is the incident arc to yi in JC , then xixj is the incident

arc to xi in C.

Proof: Let xi belong to some component 
 in C(> hj). Suppose that xi is not the only vertex

in 
. Then, since 
 is a connected component, there is some other vertex xk in 
 to which xi
is connected. By Def. 4.1, xi is the smallest-valued vertex in 
, so xixk must be an up-arc at

xi. But, since xi is an upper leaf, it has no up-arcs. It follows that xi is the only vertex in 
.

Applying Def. 4.1, if yiyj is an arc of JC , then xj must be connected to some vertex in 
. But,

since xi is the only vertex in 
, it follows that xj is connected to xi.

We now consider what happens when we remove an edge xixj from C. Recall that our convention

(from Def. 4.1) is that xi refers to a vertex in C, and yi the same vertex in JC

Lemma 4.7 If xi is a leaf of C, and yjyk is an arc of the corresponding join tree JC such that

hj < hk, and i 6= j; k, then yjyk is also an arc of JCnxi
.

Proof: By Def. 4.1, xj is adjacent to some vertex xl in the component 
 of C(> hj) to which

xk belongs: i.e. there exists some path P from xl to xk in 
. Since xi is a leaf, it could only be

at an end of the path, but xj; xk are the path-ends, and xi 6= xj ; xk. Thus, P exists in Cnxi,

and therefore in Cnxi(> hj). Since xjxl is also in Cnxi, xj is adjacent to the component � of

Cnxi(> hj) to which xk belongs.

Note that each path P connecting two vertices of 
 is also in �, except for paths starting or

ending at xi: thus the vertices of 
 are the same as those of �, with the possible exception of

xi. It then follows that xk is the smallest-valued vertex of �, so by Def. 4.1, yj is adjacent to yk
in JCnxi

.

Theorem 4.8 If xi is a leaf of a contour tree C, then JCnxi
= JC 	 yi.

Proof: From Lemma 4.7, each edge of JC that is not incident to yi is also in JCnxi
. We know

that both JC and JCnxi
are trees, with n� 1 and n� 2 edges respectively.

Suppose that yi is a leaf in JC . Then there are n � 2 edges of JC that are not incident to

yi, and by Lemma 4.7, each of them must be in JCnxi
, so JCnxi

= JC 	 yi.

Since yi is not a leaf in JC , Æ
+(yi) = 1; since yi is not the global minimum, Æ

�(yi) = 1. After

excluding these two edges, only n� 3 edges of JC remain that are not incident to yi. Again, by

Lemma 4.7, each of them must be in JCnxi
, so only one edge remains to be found.

Let the down-arc at yi be yiyj, and the up-arc be yiyk (see Fig. 8). From Def. 4.1, xi belongs

to some component 
 of C(> hj), and xj is adjacent to some vertex xl in 
. Note that xlxj
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Figure 8: Reducing a Join Tree at a Lower Leaf

must be a down-arc, and since xi has no down-arcs, xl cannot be xi. Also, since xi is the

smallest-valued vertex in 
, hi < hl.

Consider the component � of C(> hi) to which xk belongs. Since each vertex of � has value

� hk, and hk > hj , we know that � � 
 and xk must be in 
. Since xi is the smallest-valued

vertex of 
, the only arc of 
 that is not in � must be the arc incident to xi, so � = 
nxi.

But this must be a component of Cnxi(> hi). Since xl 6= xi, it follows that xl must have been

connected to xi in 
, as was xk. Then xl must be connected to xk by a path whose vertices all

have values > hi. Therefore, xl and xk belong to the same component of �, and since xk is the

smallest-valued vertex of Ænxi, yj must be connected to yk in JCnxi
.

Note that yjyk cannot be an arc in JC , because yiyjyk would then be a cycle in JC . Thus,

we have added an arc to the n� 3 arcs that we had already shown to be in JC 	 yi, for a total

of n� 2. Since JCnxi
is a tree on n � 1 vertices, there are no more arcs to be found in JCnxi

.

From Def. 4.5, it follows that JCnxi
= JC 	 yi.

We can implement this algorithm to run in time that is linear in the size of the tree. In fact, by

eliminating the tail-recursion and using static data structures for C, JC , and SC , this step changes

from being the slowest of the three sweeps in Tarasov and Vyalyi [26] to being the fastest.

Algorithm 4.2 Algorithm To Merge JC and SC :

In the merge algorithm (Fig. 9), we assume that the join tree JC and split tree SC are stored as

adjacency lists using half-arcs: that is, each arc yiyj in JC is stored as a directed arc � in yi's

adjacency list, linked to a directed arc �0 in yj's adjacency list.

Note that, since there are n�1 edges in the contour tree, the main loop of the algorithm iterates

n� 1 times, leaving one vertex on the queue at the end. The �rst and last 4 steps of this algorithm

on the example in Fig. 4 are shown in Fig. 10.

As we observed in sec. 3.3, this algorithm in fact computes the augmented contour tree, but we

can convert this to the contour tree proper in O(n) time by applying the reduction operation to each

regular vertex: these can readily be identi�ed in the contour tree, since they are the only vertices

to have one arc leading upwards and one downwards. Alternately, it is not diÆcult to modify

Algorithm 4.1 so that instead of storing the lowest vertex, we store the vertex at which the last join

or maximum occurred. Edges are only added to the join tree when another join is encountered, or

at the global minimum. After a separate pass to determine the split tree, all supernodes will be
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Algorithm to compute the contour tree:

Input: the join tree JC and split tree SC corresponding to C, stored as

adjacency lists

Output: the contour tree C

1. For each vertex xi, if up-degree in JC + down-degree in SC is 1, enqueue xi

2. Initialize C to an empty graph on kJCk vertices

3. While leaf queue size > 1

(a) Dequeue the first vertex, xi, on the leaf queue.

(b) If xi is an upper leaf, find incident arc yiyj in JC. else find incident

arc zizj in SC.

(c) Add xixj to C.

(d) JC  JC 	 yi, SC  SC 	 zi.

(e) If xj is now a leaf, enqueue xj.

Figure 9: Reconstruction Algorithm

present in at least one of the two trees. All supernodes that are only present in the join tree are

added to the split tree, along the appropriate arc. Although this reduces the cost of merging to

O(t) from O(n), the asymptotic running time of the algorithm is not improved.

4.3 Boundary E�ects and Multiple Singularities

Although we previously reported [6] that special treatment was required for vertices on the boundary

of the data set, it turns out that the algorithm given above needs no special cases for boundary

vertices. In addition, no special cases are required for dealing with multiple saddle points, although

we extend Tarasov and Vyalyi's result [26] to arbitrary dimensions in sec. 5, below.

4.4 Computing the (Non-Augmented) Contour Tree

As noted in sec. 3.3, the presentation of the algorithm is simpler if we work with the augmented

contour tree instead of the contour tree, then reduce all regular points in the augmented contour

tree to obtain the contour tree. In practice, a slightly more eÆcient implementation is possible. To

compute the contour tree with Algorithm 4.2, we need to compute the join and split trees for the

contour tree, rather than for the augmented contour tree. This can be done by omitting regular

points during the construction of the join and split trees in Algorithm 4.1. Instead of adding an

edge to the join tree at every vertex, we do so only at joins and at the global minimum: the upper

end of the edge will be the vertex at which the component in the union-�nd data structure was

last changed (i.e. created or merged). This will give us a join tree with local maxima, joins and

the global minimum only. We augment this join tree with the splits and local minima, as shown in

Fig. 11, then apply Algorithm 4.2 to compute the contour tree.
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Figure 10: Example of Merge Algorithm
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Figure 11: Computing the (Non-Augmented) Contour Tree

5 Resolving multiple singularities

The algorithm described by Tarasov and Vyalyi [26] requires simple singularities, so they describe

a method for breaking multi-saddle points into multiple simple singularities in time O(N lgN).

Although our algorithm handles multi-saddles, their method is of independent interest for compu-

tation of Morse singularities in higher dimensions; if non-simple singularities are resolved, then a

general function on a complex K is a Morse function. We therefore brie
y show that their method

applies in all dimensions. We assume familiarity with concepts of PL topology such as barycentric

subdivisions, star, and link [22].

We �rst summarize the subdivision and perturbation given in [26] and extend it trivially to

general dimensions. We then considerably simplify the proof that this method resolves non-simple

singularities, and we extend it to all dimensions. Assume that K is a m-dimensional simplicial

complex, m � 3, in IRd and f is a general function on K, (i.e., f(v) 6= f(w) for any pair of vertices

v; w 2 K). The �rst step is to construct the barycentric subdivision, sdK, and extend f linearly

over sdK. This yields a new function f0 with the property that no two critical points are adjacent,

but which may not be a general function. A small perturbation described in [26] transforms f0 into

a general function f1 over K1 = sdK.

Now the star of each non-simple singularity is further re�ned. Let v be a non-simple saddle

point. For each k-dimensional simplex in the link of v, Lk(v), a new so-called k-vertex is added in

the star of v, St(v), as follows. For each vertex w in Lk(v), a corresponding 0-vertex is added on

the edge vw, at a point which is 1

4
distance from v to w. For each k-simplex � in Lk(v), k � 1, a

k-vertex is added in the (k+1)-simplex formed by v and �, at 1

3
distance from v to the barycenter

of �. See Fig. 12 for an illustration in 2 dimensions.

Simplices of this subdivision are de�ned as follows. Let � be am-simplex in St(v), i.e., a simplex

of highest dimension; it contains m 0-vertices. These together with v form a new m-simplex. The

rest of � is then a prism with two (m � 1)-simplices as bases. Now each cell containing a 1-

vertex is star triangulated from the 1-vertex, then each 2-vertex de�nes a star triangulation to form

tetrahedra, and so on up to the (m� 1)-vertex, where the star triangulation results in m-simplices.
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Figure 12: The subdivision of a 2-simplex vwx at a non-simple singularity v.

The neighborhoods of all non-simple singularities are re�ned in this manner, yielding a new

complex K2. Now f1 is extended over K2 to yield a new function f2. By de�nition, f1 = f2 at all

vertices common to K1 and K2. We now describe the extension of f1 to f2, again very similar to

that described in [26].

Let h be a linear function over IRd that has di�erent values at all vertices of K2, and let H be

the maximum di�erence between any two values of h on K2, i.e., H = maxv;wfh(v) � h(w)g. Let

Æ be the minimum gap between successive values of f1 on K1. For each vertex u added in the star

of a non-simple singularity v, let

f2(u) = f1(v) +
Æ

2H
(h(u) � h(v)):

Function f2 on K2 now has the property that all singularities are simple, i.e., that the level

set at f2(v) divides St(v) into at most three components. Indeed, it is easy to see that all former

regular points and simple singularities are still regular or simple (see [26]), so we restrict ourselves

here to proving that a former non-simple singularity v is regular, and that all points added in K2

are either regular or simple. To see that v is a regular point, notice that after the local re�nement

around v, St(v) consists only of the simplices formed by 0-vertices and v. f2 is by construction

linear over St(v) and so v must be a regular point. Now we use an inductive proof to show that

the added k-vertices are either regular or simple. We de�ne the restricted star or restricted link to

be the restriction of the star or link of an added point u to simplices formed only by vertices added

in K2.

Lemma 5.1 All k-vertices, k � 0, added in the subdivision around non-simple singularities are

either regular points or simple singularities of f2.

Proof: Let u be a 0-vertex. u is adjacent to two original vertices from K1: the non-simple

singularity v, and the vertex w which was used to construct u. Otherwise, u is only adjacent to

other added vertices. Since f2 is linear over the simplices formed by v and the added vertices,

the level set at f2(u) divides the restricted St(u) into at most two connected components, one

with values greater than f2(u) and the other with values less than f2(u). w either belongs to

one of those connected components or it forms its own connected component. Thus, u is either

a regular point or a simple singularity.
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Now let u be a k-vertex, k � 1. By construction, u is not adjacent to any vertices of K1

other than the vertices of the k-simplex that de�ne u. Again, the restricted St(u) and Lk(u)

can be broken by the level set at f2(u) into at most 2 components. We now make the inductive

assumption that a (k � 1)-simplex � 2 Lk(u) from K1 divides Lk(u) further into at most three

components and show that under this assumption, a k-simplex from K1 in Lk(u) cannot divide

Lk(u) further into more than three connected components. Let � 2 Lk(u) be a (k� 1)-simplex

from K1, and let w 2 Lk(u) be the additional vertex from K1 that forms a k-simplex in Lk(u).

There are three cases to consider.

1. Suppose �rst that some vertices of � have value in f2 greater than f2(u) and others

have value less than f2(u). Then w necessarily belongs to one of the existing connected

components.

2. Suppose � belongs to one of the connected components of the restricted Lk(u). Then

Lk(u) without w consists of at most two components, and w can increase this to at most

three components.

3. Finally, assume that � forms a separate connected component. w is adjacent to both �

and vertices of the restricted Lk(u), so regardless of the value at f2(w), vertex w belongs

to an existing component.

These three cases complete the proof.

Note that in the proof we do not need to distinguish between boundary simplices and interior

simplices.

6 Conclusions

Tarasov and Vyalyi [26] stated an algorithm for constructing contour trees in three dimensions,

based on the work of van Kreveld et al. [28]. We have taken this algorithm, simpli�ed it, and

extended it to arbitrary dimensions. We have discarded the explicit construction of contours during

the third sweep in their algorithm. In addition, our algorithm needs no special cases or preprocessing

to deal with boundary vertices or with multiple singularities. Our algorithm applies to any arbitrary

dimensional data with the same asymptotic performance, since it is no longer dependent on explicit

construction of level sets during the sweep. For cases where it is desirable to substitute simple

singularities for multiple singularities, we have also extended Tarasov and Vyalyi's pre-processing

step to arbitrary dimensions. We have also improved the asymptotic time bound from O(N logN)

to O(n log n+ t�(t)).

7 Future Work

We have implemented the algorithm stated for relatively small data sets (< 106 vertices). Unlike

Marching Cubes [19] and its derivatives, we require the input data to be on a simplicial mesh. We

intend to modify the algorithm and the contour tree approach to work directly with voxels, and

also intend to implement a parallel algorithm for working with large data sets.
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