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ABSTRACT
Wireless sensor networks offer the potential to span and monitor
large geographical areas inexpensively. Sensors, however, have
significant power constraint (battery life), making communication
very expensive. Another important issue in the context of sensor-
based information systems is that individual sensor readings are
inherently unreliable. In order to address these two aspects, sensor
database systems like TinyDB and Cougar enable in-network data
aggregation to reduce the communication cost and improve relia-
bility. The existing data aggregation techniques, however, are lim-
ited to relatively simple types of queries such as SUM, COUNT,
AVG, and MIN/MAX. In this paper we propose a data aggregation
scheme that significantly extends the class of queries that can be
answered using sensor networks. These queries include (approxi-
mate) quantiles, such as the median, the most frequent data values,
such as the consensus value, a histogram of the data distribution,
as well as range queries. In our scheme, each sensor aggregates
the data it has received from other sensors into a fixed (user speci-
fied) size message. We provide strict theoretical guarantees on the
approximation quality of the queries in terms of the message size.
We evaluate the performance of our aggregation scheme by sim-
ulation and demonstrate its accuracy, scalability and low resource
utilization for highly variable input data sets.
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1. INTRODUCTION
With the advances in hardware miniaturization and integration, it

is possible to design tiny sensor devices that combine sensing with
computation, storage, and communication. Availability of such de-
vices has made it possible to deploy them in a networked setting
for applications such as wildlife habitat monitoring [10], wild-fire
prevention [7], and environmental monitoring [16]. As new sens-
ing devices are developed, it is envisioned that sensor networks will
be used in a large number of civil and military applications. Going
beyond traditional temperature, sound or magnetic sensors, a next
generation of sensor technology is emerging which can sense far
more diverse physical variables. In particular, highly sensitive and
selective biological/chemical sensors are in development for rapid
detection of hazardous biological and chemical agents [2, 3].

In order to support advanced sensing technology, it is necessary
to develop information and communication infrastructure in which
such sensors can be gainfully deployed. The MICA2 mote (avail-
able from Crossbow Technology [5]) with TinyOS operating sys-
tem [14] developed at UC Berkeley represents a typical building
block of such an infrastructure. The key characteristic of MICA2
motes is that it is severely limited in terms of computation capa-
bilities, communication bandwidth, and battery power. Another
issue is the inherent unreliability of the sensing functionality. Al-
though as a first order of approximation, sensor networks compris-
ing multiple sensor nodes can be viewed as a distributed system or a
network of computers, the limited capabilities of individual sensor
nodes necessitate a careful design of both the communication and
information infrastructure. Although hardware advances are likely
to result in reducing the footprint of such devices even more, the
limitations and unreliability will continue to remain. Numerous ef-
forts are in progress to build sensor networks that will be effective
for a broad range of applications [14].

Most common mode in which sensors and sensor networks are
deployed is in the context of monitoring and detection of critical
events in a physical environment. Typically, each sensor node col-
lects data from its physical environment and this data needs to be
delivered to the users through the network interconnection for fur-
ther analysis. The simplest way this can be accomplished is to let
each sensor node deliver its data periodically to the host computer,
referred to as the base station, where the data can be assembled
for subsequent analysis. This approach, however, is wasteful since
it results in excessive communication. When combined with the
fact that transmitting one bit over radio is at least three orders of
magnitude more expensive in terms of energy consumption than
executing a single instruction, alternative approaches are clearly
warranted. In order to address this problem, proposals have been
made to exploit the multi-hop routing protocols in sensor networks
in such a way that messages from multiple nodes are combined en-



route from the sensor nodes to the base station [11]. Routing in
such a network can be visualized as a routing tree with the base
station as the root and nodes sending messages up the tree towards
the root. Although this approach does reduce the number of mes-
sages, it still suffers from the problem of larger message sizes as
information passes through the routing tree from the leaf nodes to
the root node, i.e., the base station.

Researchers at UC Berkeley [18, 17] (TinyDB project) and Cor-
nell University [24] (Cougar) have developed energy efficient query
processing architectures over sensor networks. Their approach is
based on a couple of observations : first, for a user, the individual
sensor values do not hold much value. For example, in a sensor
network spanning thousands of nodes, the user would like to know
the average temperature of an extended region which might span a
large number of sensors. Second, extracting all the data out of a
sensor network is very inefficient in terms of bandwidth and power
usage. It is much more efficient to gather an overview of the total
range of data with aggregate measures such as AVERAGE, SUM,
COUNT, and MIN/MAX. In addition to energy benefits, aggregation
can help us reduce the effects of error in sensor readings. Individ-
ual sensor readings are inherently unreliable and, therefore, taking
an average of multiple sensor values gives a more accurate picture
of the true physical data value. Based on these considerations the
Cougar and TinyDB architectures have proposed using in-network
aggregation to compute such aggregates over the routing tree, min-
imizing both the number of messages as well as the size of the mes-
sages. Note that measures such as MIN and MAX are not strictly ag-
gregate measures and are indeed singleton sensor values. They are
however easy to compute in the same data aggregation framework.

Although aggregation measures such as AVERAGE and SUM are
sufficient in many applications, there are situations when they may
not be enough. In particular, in the context of biological and chem-
ical sensors, individual readings can be highly unreliable and even
a handful of outliers can introduce large errors in single aggregate
values such as AVERAGE and SUM. For example, the electronic
nose project [2] based on chemical sensors deploys a large sensor
array for detecting chemical agents. The distribution of values on
the array is used as a chemical signature to classify the agent as
being safe or unsafe. In such environments, we envision that it is
important not only to estimate single-valued aggregate measure but
also estimate the distribution of the sensor values. By having the
estimate of the data distribution available at the base station, users
can pose more complex queries and perform more sophisticated
analysis by computing median, quantiles, and consensus measures.
Our goal in this paper is to develop techniques that would enable
such an estimate of data distribution of sensor values be available at
the base station in an energy efficient manner while providing strict
error guarantees.

Although measures such as AVERAGE and MEDIAN seem very
similar at first glance, the amounts of resource required to com-
pute them are very different. To compute AVERAGE, every node
sends two integers to its parent, one representing the sum of all
data values of its children and the other is the total number of its
children [17]. In other words, AVERAGE can be computed by using
constant memory and by sending constant sized messages. On the
other hand, to answer a MEDIAN query accurately, we need to keep
track of all distinct values and thus the message size and memory
required to store it grows linearly with the size of the network. To
get around this difficulty we focus on approximation schemes to
answer quantile and related queries. For most sensor network ap-
plications 100% accuracy is not necessary and our approximation
scheme can be adapted to meet any user specified tolerance at the
expense of higher memory and bandwidth consumption. To this

end, we introduce Quantile Digest or q-digest : a novel data struc-
ture which provides provable guarantees on approximation error
and maximum resource consumption. In more concrete terms, if
the values returned by the sensors are integers in the range [1, σ],
then using q-digest we can answer quantile queries using message
size m within an error of O(log(σ)/m). We also outline how
we can use q-digest to answer other queries such as range queries,
most frequent items and histograms. Another notable property of
q-digest is that in addition to the theoretical worst case bound error,
the structure carries with itself an estimate of error for this particu-
lar query.

The organization of the rest of the paper is as follows. In section
2 we discuss the model we shall be working with and some related
work. Section 3 is devoted a to a detailed description of q-digest
and how it performs in-network data aggregation. In section 4, we
shall show how one can query q-digest to obtain quantities of inter-
est. Then in section 5 we move on to an experimental evaluation of
our scheme under various inputs. Finally we discuss extensions to
q-digest and outline directions for future work.

2. BACKGROUND AND RELATED WORK
We consider a network of n sensor devices, where all devices

are sensing in a common modality. Without loss of generality,
each sensor’s reading is assumed to be an integer value in the range
[1, σ], where σ is the maximum possible value of the signal. The
network contains a special node, called base station, which is re-
sponsible for initiating the query, and collecting the data from the
sensors. When a query is initiated by the base station, the sensors
organize themselves in a spanning tree, rooted at the base station,
which acts as the routing tree for sensors to propagate their signal
values towards the base station. Actually a routing tree is not es-
sential to our purposes; the only requirements we impose on the
routing scheme is that there be no routing loops and no duplicate
packets. The routing tree can be used for query dissemination as
well. In this paper, we assume that the links between sensor nodes
are reliable (no packets are lost), and focus exclusively on the data
aggregation problem.

An aggregate such as MEDIAN is intrinsically more difficult to
compute than MIN, MAX, or AVERAGE. In fact, under the natural
assumption that each sensor only forwards a fixed amount of data,
it is easy to argue that one cannot calculate the median (or any other
quantile) precisely. Imagine, for instance, a simple situation where
sensor A calculates the median based on the medians received from
two other sensors B and C. Even if B and C know the exact me-
dian of their own data, there is an inherent uncertainty in A’s com-
putation: A doesn’t know the rank of B’s median in dataset of C
and vice-versa. If B and C aggregate data from n sensors each,
then A’s estimate of the combined median can have error of n/2 in
the worst case.

This argument shows that, with the in-network aggregation model,
only an approximation of the MEDIAN, or quantiles, is possible.
Our scheme, in fact, shows the best possible approximation quality
(asymptotically), and offers a trade-off between the message size
and the error guarantee.

2.1 Related Work
The problems of decentralized routing, network maintenance and

data aggregation in sensor networks have led to novel research chal-
lenges in networking, databases, and algorithms [15, 6]. In terms
of providing database queries over sensor networks, TinyDB [18]
at UC Berkeley and Cougar [24] at Cornell University are the two
major efforts. They provide algorithms for many interesting aggre-
gates such as MAX, MIN, AVERAGE, SUM, COUNT. For queries such



as MEDIAN, TinyDB does not perform any aggregation; all data is
delivered to the base station where MEDIAN is calculated centrally
[17]. Approximate aggregation schemes for more complex queries
such as contours and wavelet histograms have been proposed for
the TinyDB system [12]. These algorithms perform fairly well in
practice, but they do not provide any strict bounds on error. Zhao
et al. [25] have also suggested algorithms for constructing sum-
maries like MAX, AVG. The focus of their work is however more on
network monitoring and maintenance, rather than database query.
Considine et. al. [4] have discussed how to compute COUNT, SUM,
AVERAGE in a robust fashion in the presence of failures such as lost
and duplicate packets. Przydatek et. al. [21] have discussed secure
ways to aggregate data, but with only one aggregating node. To our
knowledge, this work is the first to provide efficient approximate
algorithm for queries like quantiles, consensus and range.

The data streams community has also dealt with very similar
problems where queries on large amounts of data need to be an-
swered with limited memory. In the data stream model, the data
is not stored and hence can be examined only once. In sensor net-
works the data is stored, but is distributed. In the context of data
streams, Greenwald and Khanna [8] have proposed an efficient ap-
proximation algorithm for computing quantiles. Manku and Mot-
wani [19] have provided approximate algorithms for finding fre-
quent items. A recent work by Hershberger et al. [13] can be used
to compute quantile and frequent items. Since this paper was sub-
mitted, Greenwald and Khanna [9] have proposed a distributed sen-
sor network algorithm to find approximate quantiles using message
size m within an error of O(log2(n)/m). The similarity between
the problems that arise in sensor networks and data streams suggest
that it will be a fruitful avenue of research to exploit the insights
gathered on one field on the other one.

3. THE QUANTILE DIGEST
A query processing framework for a sensor database needs to

support both single valued queries such as AVG as well as more
complex queries like HISTOGRAM. Using the TinyDB framework,
many single valued queries can be answered accurately with mini-
mal resource usage.

In order to support more complex query functionality, we pro-
pose a new summary structure, referred to as the q-digest (quan-
tile digest), which captures the distribution of sensor data approxi-
mately. q-digest has several interesting properties which allow it to
be used in different ways.

1. Error-Memory Trade-off : q-digest is an adaptive query frame-
work in which users can decide for themselves the appropri-
ate message size and error trade-offs. The error conscious
user can set a high maximum message size and achieve good
accuracy. A resource conscious user can specify the maxi-
mum message size he/she is willing to tolerate, and the q-
digest will automatically adapt to stay within this bound and
provide the best possible error guarantees. The usefulness of
this mode of operation is further extended by the confidence
factor which is a part of q-digest.

2. Confidence Factor : The theoretical worst case error bound
applies to only very specific data sets which are unlikely
to arise in practice. In any actual query, the error is much
smaller and the q-digest structure contains within itself a
measure of the maximum error accumulated. So any answer
provided by q-digest comes with a strict bound of error.

3. Multiple Queries : Once a q-digest query has been completed
the q-digest at the base station contains a host of interesting
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Figure 1: q-digest: Complete binary tree T built over the entire
range [1 . . . σ] of data values. The bottom most level represents
single values. The the dark nodes are included in the q-digest
Q, and number next to them represent their counts.

information. We can extract information on quantiles, data
distribution and consensus values from this structure without
further querying the sensor nodes.

The core idea behind q-digest is that it adapts to the data distri-
bution and automatically groups values into variable sized buckets
of almost equal weights. Since q-digest is aimed at summarizing
the data distribution and to support quantile computation, it is use-
ful to compare it with traditional database approaches such as his-
tograms. The critical difference between q-digest and a traditional
histogram is that q-digest can have overlapping buckets, while tra-
ditional histogram buckets are disjoint. q-digest is also better suited
towards sensor network queries. For example, a simple equi-width
histogram technique is not suitable for determining quantiles, be-
cause the weight of a bucket can be arbitrarily large resulting in un-
bounded errors. For bounding errors in quantile queries, the more
appropriate approach would be to use an equi-depth histogram [20].
This technique, however, requires that the data be stored in sorted
order in a single location, which is not practicable in a sensor net-
work setting. The overlapping buckets gives q-digest another ad-
vantage over equi-depth histogram, in being able to answer consen-
sus queries (frequent values).

The plan for the rest of this section is as follows. First in section
3.1 we discuss the properties of q-digest and then how one builds
it in a single sensor (section 3.2). In section 3.3, we show how q-
digests from different sensors are merged together. In section 3.4
we prove the memory and error bounds on q-digest. Finally, in
Section 3.5, we show how q-digest can be represented in a compact
fashion.

3.1 Properties of q-digest
A q-digest consists of a set of buckets of different sizes and their

associated counts. Every sensor has a separate q-digest which re-
flects the summary of data available to it. The set of possible
different buckets are chosen from a binary partition of the value
space 1, .., σ as shown in Fig. 1. The depth of the tree T is log σ.
Each node v ∈ T can be considered a bucket, and has a range



[v.min, v.max] which defines the position and width of the bucket.
For example, root has a range [1, σ], and its two children have
ranges [1, σ/2] and [σ/2 + 1, σ]. The nodes at the bottom-most
level have buckets of width 1 (single values). Every bucket or node
v has a counter (count(v)) associated with it.

In any particular sensor, the q-digest is a subset of these possible
buckets with their associated counts. From now on, we refer to a
q-digest as Q and the conceptual complete tree as T . The q-digest
encodes information about the distribution of sensor values. For
example, the number of values which lie between 1 and σ/2, is the
total count of all nodes in the subtree rooted at the [1, σ/2] node.
In Fig. 1, the node f corresponds to the range [5 . . . 8] and the total
number of values in this range is 2 + 2 = 4. For the root node g
(range [1 . . . 8]), the total number of values is 1+2+2+4+6 = 15.

The size of the q-digest is determined by a compression param-
eter k. The exact dependence of k on memory required will be
spelled out in Section 3.4. Given the compression parameter k, a
node v is in q-digest if and only if it satisfies the following digest
property:

count(v) ≤ �n/k�, (1)

count(v) + count(vp) + count(vs) > �n/k�. (2)

where vp is the parent and vs is the sibling of v.
The only exception to this property are the root and leaf nodes.

If a leaf’s frequency is larger than �n/k� then too it belongs to the
q-digest. And since there are no parent and sibling for root, its can
violate property 2 and still belong to the q-digest.

The first constraint (1) asserts that unless it is a leaf node, no
node should have a high count. This property will be used later to
prove error bounds on q-digest. The second constraint (2) says that
we should not have a node and its children with low counts. The
intuition behind this property is that if two adjacent buckets which
are siblings have low counts, then we do not want to include two
separate counters for them. We merge the children into its parent
and thus achieve a degree of compression. This will be described
in detail in the next section. Looking at Fig. 1 (n = 15, k = 5) we
can check that indeed all nodes satisfy these two properties.

3.2 Building a q-digest
Consider a particular sensor s that has at its disposal n data val-

ues. Each data value is an integer in the range [1, σ]. An exact rep-
resentation of the data will consist of the frequencies {f1, f2, . . . , fσ},
where fi is the frequency with which the data value i is observed,
and
�

i fi = n. In the worst case, the storage required to store this
data will be O(n) or O(σ), whichever is smaller. Since transmit-
ting this data via radio will be very expensive in a sensor network,
we would like to construct a compact representation of this data us-
ing q-digest. For the ease of presentation, we shall now describe the
process of creation of a q-digest as if all the sensor data is available
at s. In a real sensor network all these values will be distributed
across different sensors. We will later discuss how q-digests are
constructed in a distributed fashion on multiple sensors.

To construct the q-digest we will hierarchically merge and reduce
the number of buckets. We go through all nodes bottom up and
check if any node violates the digest property. Since we are going
bottom up, the only constraint that can be violated is Property 2,
i.e. nodes whose parent and sibling add up to a small count. For
later notational convenience we define a relation ∆v on the node v
as follows:

∆v ≡ count(v) + count(vl) + count(vr)

where, vl and vr are the left and right child of v. So, if any node

Algorithm 1 COMPRESS(Q,n, k)
1: � = log σ − 1;
2: while l > 0 do
3: for all v in level � do
4: if count(v) + count(vs) + count(vp) <

�
n
k

�
then

5: count(vp)+ = count(v) + count(vs);
6: delete v and vs from Q;
7: end if
8: end for
9: �← �− 1;

10: end while
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Figure 2: Building the q-digest. The leaf nodes represent values
[1 . . . 8] from left to right. Dark nodes in (d) are included in q-
digest.

v whose child violate Property 2, its children are merged with it by
setting its count to ∆v and deleting its children. The algorithm to
execute this hierarchical merge is described as COMPRESS (Al-
gorithm 1). It takes the uncompressed q-digest Q, the number of
readings n and compression parameter k as input. The next exam-
ple will make it clear how the compression is done.

EXAMPLE 1. Consider a set of n = 15 values in the range
[1, 8] as shown in Fig. 2(a). The leaf nodes from left to right repre-
sent the values 1, 2, . . . , 8 and the numbers next to the nodes repre-
sent the count. The number of buckets required to store this infor-
mation exactly is 7 (one bucket per non-zero node). Let us assume
a compression factor k = 5, �n/k� = 3. In Fig. 2(a), children of
a, c, d violate digest property (2). So we compress each of these
nodes by combining their children with them. Thus we arrive at the
situation in Fig. 2(b). At this point node e still violates the digest
property. So we compress node e and arrive at Fig. 2(c). Node g
still violates the digest property and so we compress g and arrive
at our final q-digest shown in Fig. 2(d). Only 5 nodes are required
to store it.

We note some aspects of the q-digest now. Consider node d
which represents the range [7, 8] in Fig. 2. The only information
that we can recover from the q-digest is that there were two values
which were present in the original value distribution in the range



[7, 8]; the original information that there was a value 7 and a value
8 has been lost. On the other hand the information on the ranges
3 and 4 have been preserved perfectly. The q-digest can tell us
that there were exactly 4 occurrences of the value 3 and 6 occur-
rences of value 4. This emphasizes a key feature of q-digest: de-
tailed information concerning data values which occur frequently
are preserved in the digest, while less frequently occurring values
are lumped into larger buckets resulting in information loss.

3.3 Merging q-digests
So far we have shown how the q-digest is built if all the data is

available on a single sensor. But in a true sensor network setting
we need to be able to build the q-digest in a distributed fashion.
For example if two sensors s1 and s2 send their q-digests to their
parent sensor (parent in the routing tree), the parent sensor needs
to merge these two q-digests to construct a new q-digest and also
add its own value to the q-digest. A single value can be considered
a trivial q-digest with one leaf node. Since merging multiple q-
digests is no harder than merging two digests, we shall now show
how two q-digests can be merged.

Algorithm 2 MERGE(Q1(n1, k), Q2(n2, k))

1: Q← Q1 ∪Q2;
2: COMPRESS(Q,n1 + n2, k);

The idea is to take the union of the two q-digest and add the
counts of buckets with the same range ([min, max]). Then, we
compress the resulting q-digest. The formal MERGE algorithm is
described in Algorithm 2. The following example shows the merger
of two q-digests.

11

24

13

16

17

(c)

(b)(a)

(d)

25

29

11

25

36

16

1616

p

q

p

q

p

q q

p

ss

ss

r r

rr

20

4040

15

15

39

19

60 57

606074

35

74

35

t t

tt

20
QQ1 2

Figure 3: Merging two q-digest Q1 and Q2, shown in (a) and
(b). (c) shows the union of the two q-digests. (d) is the final
q-digest after compression.

EXAMPLE 2. Figure 3 shows the steps of merging two q-digests
Q1 and Q2. For this example, n1 = n2 = 200, k = 10 and
σ = 64. The tree on the left (3(a)) shows a portion of Q1, and

tree in 3(b) shows the corresponding portion of Q2. For the sake
of clarity, we are only showing a small subset (range [1 . . . 8]) of
the complete trees. The dark nodes are the nodes included in the
q-digest, whereas the light ones are just for visualization. For the
final q-digest, n = n1 + n2 = 400 and �n

k
� = 40.

The first step is to take the union of the two q-digests. This is
shown in Figure 3(c). Notice the nodes in 3(a) and 3(b): after
union, their counts have been added in 3(c). After this step, the
q-digest could have some nodes which violate the digest property.
In 3(c), nodes r and p violate this property (∆r = 36 < 40, ∆p =
39 < 40). (Notice that no node can violate Property (1)). Hence,
r and p are merged with their respective children (shown by the
dashed rectangle). Figure 3(d) shows the final q-digest.

3.4 Space Complexity and Error Bound
In this section we evaluate the space-accuracy trade-off inherent

in q-digest. q-digest is a small subset of the complete tree which
contains only the nodes with significant counts. This feature of the
q-digest provides the following theoretical guarantee on the size of
Q.

LEMMA 1. A q-digest (Q) constructed with compression pa-
rameter k has a size at most 3k.

PROOF. Since nodes in Q satisfy digest property (2), we have
the following inequality:
�

v∈Q

(count(v) + count(vp) + count(vs)) > |Q| · n
k

where |Q| is the size of the q-digest Q.
Now, in the summation on the left hand side, the count of any

node contributes at most once as each parent, sibling and itself.
Hence,

�

v∈Q

(count(v) + count(vp) + count(vs))

≤ 3
�

v∈Q

count(v) = 3n.

Hence, we get

|Q| · n
k

< 3n.

So the total size of the q-digest is 3k.

Any time a q-digest is created, information is lost. As is evident
from Example 1, a node with small count will be merged into its
parent, and thus its count can recursively “float” to its ancestor at
any level. For example, the count of leftmost leaf in Fig. 2(a) ends
up in the root of the tree in Fig. 2(d). Similarly merging two di-
gests can also lead to information loss. For example consider the
two nodes marked as t in Fig 3 (a) and (b). In the tree Q2, the infor-
mation for node t has been merged into p. So in the final q-digest
shown in Fig. 3(d), the node t, undercounts the occurrence of that
value. Some of that count is hidden in node p and some even in
the root node. In the worst case, the count of any node can devi-
ate from its actual value by the sum of the counts of its ancestors.
We will use this reasoning to prove the error bounds on quantile
queries. This bounds the maximum error in our scheme as shown
in the next lemma.

LEMMA 2. In a q-digest (Q) created using the compression
factor k, the maximum error in count of any node is log σ

k
· n.



PROOF. Any value which should be counted in v can be present
in one of the ancestors of v in T . So the maximum error in v:

error(v) ≤
�

x∈ancestor(v)

count(x)

≤
�

x∈ancestor(v)

n

k
(Property 1)

≤ log σ · n
k

(height of tree is log σ)

Thus the relative error error(v)/n in any node’s count is log(σ)/k.
We now prove that after merging two q-digests, we can still

maintain the same error bounds.

LEMMA 3. Given p q-digests Q1, Q2, ...Qp, built on n1, n2, ...np

values, each with maximum relative error of log σ
k

, the algorithm
MERGE combines them into a q-digest for

�
ni values, with the

same relative error.

PROOF. Merging is a two step process: union step and compres-
sion step. From Lemma 2, the compression algorithm ensures that
the error is less than log σ

k
, given that the tree before compression

had the same error bounds. So, we just need to prove that after the
union step error is not more than log σ

k
.

After union, any node v of Q is just the union of corresponding
nodes v1, v2, ...vp in q-digests, the error in v can be at most the
sum of errors in counts of v1, v2, ...vp:

error(v) ≤
�

i

error(vi) ≤
� log σ

k
ni

=
log σ

k

�
ni =

log σ

k
n

Hence, the relative error after union step is bounded by log σ
k

.

Now, we prove the error bounds on quantile queries. But before
we proceed, we would like to provide a definition of quantile query
and explain how quantiles can be computed using q-digest.

In quantile query, the aim is the following: given a fraction q ∈
(0, 1), find the value whose rank in sorted sequence of the n values
is qn. MEDIAN is a special case of quantile query, with q = 0.5.
The relative error ε in the query is defined as follows: if the returned
value has true rank r, then the error ε is

ε ≡ |r − qn|
n

.

We now describe how quantile queries can be answered using
q-digest. The intuition is as follow: Suppose we did a post-order
traversal on Q, and summed the counts of all the nodes visited be-
fore a node v. This sum c, is a lower bound on the number of values
which are surely less than v.max. We report the value v.max as
qth quantile, for which c becomes greater than (or equal to) qn.
This sum would be the exact quantile, if all the non-leaf nodes
whose range contains of v.max (ancestors of the leaf node con-
taining the single value v.max) had a count of zero. But if they are
non zero, some of the values counted in them can be greater than
v.max, and we have no way to determine that. For example, if we
did a MEDIAN query on Fig. 2(d), we will report the value 4 as the
answer, but do not know whether the values in g were less than or
more than 4.

Using Lemma 3, we know that this error is bounded by ( log σ
k
·

n). Hence we can find the number of values less than v.max with
bounded error. The algorithm to do this query efficiently on a q-
digest is described in Section 4.

Now we are ready to state the main result of this paper.

THEOREM 1. Given memory m to build a q-digest, it is possi-
ble to answer any quantile query with error ε such that

ε ≤ 3 log σ

m

PROOF. Choose the compression factor k to be m/3. Lemma 1
says that the memory required is m. The error in quantile query:

ε ≤ log σ

k
=

3 log σ

m

3.5 Representation of a q-digest
After computing the q-digest structure, each sensor has to pack

it, and transmit it to its parent. The main limitation of sensor net-
works is their limited bandwidth. To represent a q-digest tree in a
compact fashion we number the nodes from 1 to 2σ − 1 in a level
by level order, i.e. root is numbered 1 and its two children are num-
bered 2 and 3 etc. Now to transmit the q-digest we send a set of
tuple of the following form 〈nodeid(v), count(v)〉 which requires
a total of (log(2σ)+ log n) bits for each tuple. For example, the q-
digest in Fig. 1 is represented as: {〈1, 1〉, 〈6, 2〉, 〈7, 2〉, 〈10, 4〉, 〈11, 6〉}

4. QUERIES ON Q-DIGEST
In this section, we describe the possible queries that can be sup-

ported using q-digest. We assume that the size of q-digests is m,
which means that the relative error ε is less than 3 log σ

m
.

4.1 Quantile Query
The quantile query is: Given a fraction q ∈ (0, 1), find the value

whose rank in sorted sequence of the n values is qn.
To find the qth quantile from q-digest, we sort the nodes of q-

digest in increasing right endpoints (max values); breaking ties by
putting smaller ranges first. This list (L) gives us the post-order
traversal of list nodes in q-digest. Now we scan L (from the be-
ginning) and add the counts of nodes as they are seen. For some
node v, this sum becomes more than qn, we report v.max as our
estimate of the quantile.

Notice that there are at least qn readings with value less than
v.max, hence rank of v is at least qn. The source of error are read-
ings with value less than v.max, present in ancestors of v. These
will not be counted in quantile algorithm, since v comes before its
ancestors in L. This error is bounded by εn (Theorem 1). So, the
rank of value reported by our algorithm is between qn and (q+ε)n.
Thus the error in our estimate is always positive, i.e., we always
give a value which has a rank greater than (or equal to) the actual
quantile.

For example, if we perform a MEDIAN query on q-digest Q
{〈1, 1〉, 〈6, 2〉, 〈7, 2〉, 〈10, 4〉, 〈11, 6〉}, shown in Fig. 2(d), the sorted
list L will be {〈10, 4〉, 〈11, 6〉, 〈6, 2〉, 〈7, 2〉, 〈1, 1〉}. The count at
node 〈11, 6〉 will be more than 0.5n (8), and we will report the
value 4 as the estimated median. The error is bounded by the count
of node g.

4.2 Other Queries
Once the q-digest is computed, it can be used to provide approx-

imate answers to a variety of queries.

• Inverse Quantile: Given a value x, determine its rank in the
sorted sequence of the input values.

In this case, we again make the same sorted list (L), and tra-
verse it from beginning to end. We report the sum of counts



of buckets v for which x > v.max as the rank of x. The re-
ported rank is between rank(x) and rank(x)+εn, rank(x)
being the actual rank of x.

• Range Query: Find the number of values in the given range
[low, high].

We simply perform two inverse quantile queries to find the
ranks of low and high, and take their difference. The maxi-
mum error for this query is 2εn

• Consensus Query: Given a fraction s ∈ (0, 1), find all the
values which are reported by more than sn sensors. This
can be thought of finding a value on which more than certain
fraction of sensor agreed. These values are called Frequent
items.

We report all the unit-width buckets whose count are more
than (s − ε)n. Since the count of leaf bucket has an error
of at-most εn (Lemma 2), we will find all the values with
frequency more than sn. There will be a small number of
false positives; some values with count between (s − ε)n
and sn may also be reported as frequent.

4.3 The Confidence Factor
In Theorem 1 we proved that the worst case error for a q-digest

of size m is 3 log σ
m

. But this worst case occurs for a very patholog-
ical input set, which is unlikely in practice. Choosing the message
size according to these estimates will lead to useless transmission
of large messages, when a smaller one could have ensured the same
required error bounds. So if the q-digest is computed by setting m
to a value for which it is expected to deliver the required error guar-
antees, we still need a way to certify that those guarantees are met.
For this, we provide a way to calculate the error in each particular
q-digest structure. We call this the confidence factor.

If we define the weight of a path as the sum of the counts of the
nodes in the path, the weight of the path from root to any node is
equal to the sum of its ancestors. So the maximum error is present
in the path of q-digest with the maximum weight. We define the
confidence factor θ as: θ = (maximum weight of any path from
root to leaf in Q) / n.

This ensures that the error in any quantile query is bounded by
θ. Hence, now we can find out the maximum error in any q-digest
and discard the query if it does not satisfy the required precision.
In experiments, for example, we work with σ = 216 and m =
100, the theoretical maximum error is 3 log σ

m
≈ 48%, but we get

a confidence factor of ≈ 9% for the q-digest at the base station.
This leads to huge savings in terms of transmission cost. Notice
that the actual error in query can still be much smaller than θ (in
experiments the actual error in the median was close to 2%).

5. EXPERIMENTAL EVALUATION
We simulated our aggregation algorithm in C++. The simulator

takes the network topology (routing tree) and readings of sensors as
the input. The base station initiates q-digest computation by send-
ing a query to all its children, which forwards this query to their
children, and so on. The leaf sensors send their value as q-digest to
their parent. Each sensor then aggregates q-digests received from
its children with its own reading, and then sends the aggregate to
its parent. The quantile and range queries are performed on the
q-digest received at the base station.

The topology for the network was generated as follows. We as-
sume that the sensors have a fixed radio range and are placed in a
square area randomly. If two sensors are within range of each other,
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Figure 4: A typical network routing tree for 40 nodes placed in
a 200×200 area.

they are considered neighbors. This generates a network connec-
tivity graph. The routing tree required for our simulation is simply
a breadth first search tree over this graph with an arbitrary node
chosen as the root or the base station. In Fig 4, we show a typ-
ical network routing tree. When we vary the number of sensors,
we vary the size of the area over which they are distributed so as
to keep the density of sensors constant. As an example, we used
a 1000×1000 area for 1000 sensors with equal radio ranges. For
4000 sensors, the terrain dimensions were enlarged to 2000×2000
keeping radio range constant.

We ran our aggregation algorithm for “random” and “correlated”
sensor values. For the random case, each sensor value is taken to
be a 16 bit random number. In a real network, the values at sensors
are not random, but are correlated with their geographic location.
To simulate such correlation we adapted geographic elevation data
available from the United States Geological Survey (USGS) [22]
which is shown in Fig 5. The sensors are assumed to be scattered
over the terrain and the elevation of the terrain at the sensor location
is assigned as the sensor value. The terrain size was scaled to fit in
with our simulated terrain size and the elevation data was scaled to
fit in 16 bits. All performance data we present is averaged over 5
different topologies.

We compare the performance of our algorithm with a simple un-
aggregated data summarization scheme which we call list. In this
scheme, the summary is a list of distinct sensor values and a count
for each value. At each node, this list contains all the distinct sensor
values that occur in the subtree rooted at the node. In other words
the list structure is a histogram with bucket width 1. There is no
information loss and we can answer quantile or histogram queries
exactly. As the message progresses towards the base station, more
and more distinct values begin to occur and the size of the message
grows.

5.1 Range Queries and Histogram
As a first demonstration of our algorithm we build a histogram

of the correlated input data using range queries for 8000 nodes.
We divided the data values into 32 equi-width buckets and queried
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Figure 5: Three dimensional elevation data for Death Valley
which is used to model correlated data for our simulation. The
bottom of the plot shows the contour lines for the terrain.

Data Type Msg Size (bytes) θ Actual Error
Random 160 13% 6.1%

Correlated 160 24% 5.0%
Random 400 6.6% 2.6%

Correlated 400 7.3% 1.9%

Table 1: Maximum possible error and actual error in median
query

both q-digest and list summaries to find the number of values in
each bucket. The resulting histogram is shown in Fig 6. On Fig 5
there are two relatively flat areas which are clearly identifiable in
the contour plot: the empty area near the bottom left hand corner
and the area near the center. Sensors on these areas will contribute
a lot of values which are close to each other. These features lead
to two peaks (at 0 and 22K) in the histogram which are very well
captured by our aggregation scheme.

5.2 Accuracy and Message Size
In an 8000 sensor network, we measured the accuracy of our al-

gorithm in evaluating the median for different message sizes. The
error in this experiment is defined as the ratio of rank error in
the median estimated from q-digest and number of values (ε =
(|r−n/2|)

n
). The results are shown in Fig 7. As expected, the graph

shows that the error declines very rapidly with growing message
size and with a message size of 160 bytes, we already are down to
5% error. There is no significant difference in error for random or
correlated data.

We also calculated the confidence factors (θ) for median calcu-
lation with varying message sizes. This data is shown in Table 1.
It is clear that the theoretically estimated accuracy is pessimistic
compared to the actual accuracy achieved.

Now we turn to a comparison of the message sizes required by
q-digest and those required by list. From Fig 7 it is clear that a mes-
sage size of 400 is sufficient to achieve accuracy of 2%. Compared
to this, how much do we need to pay for exact answers? The com-
parison is shown in Fig 8 which shows maximum message size for
q-digest and list for different numbers of sensors. Regardless of the
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Figure 6: Exact and approximate histogram of input data
shown in Fig 5. The open boxes represent the exact histogram
while the solid thin bars represent the approximate histogram
obtained from q-digest.
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Figure 7: Measured percentage error in median vs message size
(in bytes) for an 8000 node network.

correlation in data values or n (the number of sensors), to achieve
2% accuracy our maximum message size needs to be no bigger
than 400. For random data, the size for list increases steadily with
n. Since the sensor values for the random case can be any inte-
ger between 0 and 65535, the number of distinct sensor values is
roughly proportional to the number of different sensors. For the
correlated case, the number of distinct values in the input is only
about 1500. So the maximum message size for list plateaus with
increasing number of sensors.

A more detailed view of the distribution of message sizes is
shown in Fig 9. Given a message size m, we ask the question
: what fraction of total nodes transmitted messages of size larger
than m? This quantity is plotted in the vertical axis. We compare
this distribution for list and q-digest (size 400 bytes) for random
input values. For message sizes less than 400 bytes, the list and q-
digest the distribution is identical. For q-digest there are no nodes
which transmit message of size larger than 400 bytes. In compari-
son, about 5% (400 nodes) of nodes for the list scheme do transmit
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Figure 8: Maximum message sizes for different numbers of sen-
sors for naive unaggregated algorithm and our aggregation al-
gorithm. We fixed message size at 400 bytes which gives about
a 2% error (see Fig 7).

messages larger than this. 5% might look like a small number, but
we immediately realize that these nodes actually bear an unusually
heavy load. 1% of nodes transmit messages of size bigger than 3K
and some nodes transmit messages of size up to 30K! These nodes
represent nodes closer to the base station. In any routing tree most
of the nodes are near the leaf levels and such nodes are very lightly
loaded compared to nodes near to the base station. Q-digest does a
much better job at distributing load by requiring no node to transmit
more than 400 bytes.

5.3 Total Data Transmission
In Fig 10 we show the total amount of data transferred for q-

digest and list. As expected, since the number of distinct values
is less for correlated scenario, the amount of data transferred is
lower for correlated data. For a network size of 1000, our scheme
outperforms the list algorithm by a factor of 2, while for network
size of 8000, this factor increases to about 4. This shows that our
scheme is highly scalable, and has significant performance benefits
in the case of larger networks.

5.4 Residual Power
Data transmission is very closely tied up with power consump-

tion in sensor networks. There are two common metrics for mea-
suring power consumption which we shall consider in turn.

• Total power consumption : This is the total power spent by
all nodes in the network and is roughly proportional to total
amount of data transmitted in the network (Fig 10). In reality,
power consumption increases super-linearly with total data
transmitted. This is because with increasing number of data
packets, there is more contention for the wireless medium
and a lot of power can be spent in packet collisions.

• Lifetime : A more appropriate power consumption metric is
the lifetime of the network. This is the time at which network
partition occurs because of nodes running out of power. A
slightly different definition of lifetime can be taken as the
time required for the first node to run out of power. For a
network which is geared towards data aggregation, the nodes
near the base station shoulder the bulk of data transmission

 0.0001

 0.001

 0.01

 0.1

 1

 1  10  100  1000  10000  100000

F
ra

ct
io

n 
of

 N
od

es

Message Size

list : random
q-digest : random

Figure 9: Cumulative Distribution of number of nodes as a
function of message size. On the horizontal axis we have mes-
sage size m, while on the vertical axis we have number of nodes
which transmitted messages of size larger than m. Total num-
ber of nodes is 8000.

and hence runs out of power fastest. Thus in general, lifetime
is a more useful indicator of the usable life of the network
than total power consumption.

With q-digest, even nodes close to the base station transmit very
small amounts of data and the transmission burden is distributed
much more equitably. So we can expect the usable life time of the
network to be vastly extended with our data aggregation scheme
compared to the list scheme. We experimentally demonstrate this
by considering the residual power of sensor nodes after a query. Let
us assume that all nodes in the network start with the same amount
of battery power. After a query has been processed, different nodes
will have different amounts of power left depending on how much
data each node transmitted. This power left is known as residual
power. Residual power is a measure of the load distribution in the
network.

We simulated the effect of a single query on an 8000 node net-
work where all nodes started out with equal power of 40000 units.
We assumed that for every byte transmitted, one unit of power is
depleted. The results are shown in Fig 11. On the horizontal axis
we plot residual power fraction P which is defined as

P =
Residual Power

Initial Power

On the vertical axis we plot the number of nodes which have resid-
ual power fraction less than P . From Fig 11 we see that list does
a very bad job of distributing load. More than one node (0.02% of
8000) have residual power fraction less than 1/2, i.e. one query
drained half the battery power available for these nodes! At this
consumption rate, after two queries using list, there will be at least
one exhausted node. On the other hand q-digest performs well. The
maximum message size for q-digest was set to 400; hence no node
spent any more than 400 units of power. Thus all nodes had resid-
ual power fraction better than 99%. In the worst case, q-digest will
be able to perform 100 queries before any node runs out of power.

6. DISCUSSION AND FUTURE WORK
We have presented q-digest : a distributed data summarization

technique for approximate queries using limited memory. It ac-
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Figure 10: Total data transmitted plotted as a function of total
number of sensors for both random and correlated input. The
message size for the aggregated scheme was set at 160 bytes.

curately preserves information about high frequency values while
compressing information about low frequency ones. As such, it is a
good approximation scheme when there are wide variations in fre-
quencies of different values. Our experimental results indicate that
orders of magnitude savings in bandwidth and power can be real-
ized by q-digest compared to naive schemes for both random and
correlated data. We note that q-digest is easily extensible to multi-
dimensional data. For example to handle two dimensional data, we
need to extend the binary tree representation of q-digest to a quad
tree.

We have shown how a q-digest can be computed in a distributed
fashion once a query is made. In a continuous query setting, such a
digest will become outdated as sensor values change. It is possible
to build a new q-digest by sending in a new query; but a more
efficient way would be to send small updates such that the old q-
digest can be refreshed with new information.

In the current work, we have not taken into account the effect
of lost messages. The effect of lost messages can be mitigated to
some extent in a continuous query setting where the digest is con-
tinuously updated. In that case the parent can cache the q-digests
received from its children and if a q-digest from a child is lost, it
can replace that q-digest by the older one.

As presented in this paper, q-digest provides information about
the distribution of data values, but not information concerning where
those values occurred. Since q-digest is easily extensible to multi-
dimensional data, we are currently working on a multi-dimensional
q-digest where spatial information will be preserved and hence the
user would be able to query not only about data values, but the spa-
tial locations of those values as well. We envision that as querying
architectures for sensor network become more and more sophisti-
cated, the use of efficient approximate algorithms will become very
common.
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