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OverviewOverview

Overview

• Introduction

• Locality Sensitive Hashing (Aneesh)

• Hash Functions Based on p-Stable

Distributions (Michael)
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OverviewOverview

Overview

• Introduction

• Nearest neighbor search problems

• Higher dimensions

• Johnson-Lindenstrauss lemma

• Locality Sensitive Hashing (Aneesh)

• Hash Functions Based on p-Stable

Distributions (Michael)
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Problem StatementProblem Statement

Today’s Talks: NN-search in high 
dimensional spaces

• Given 

• Point set P = {p1, …, pn}

• a query point q

• Find

• [ε-approximate] nearest neighbor to q from P

• Goal:

• Sublinear query time

• “Reasonable” preprocessing time & space

• “Reasonable” growth in d (exponential not acceptable)
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Example Application: Feature spaces

• Vectors x∈Rd represent

characteristic features

of objects

• There are often many

features

• Use nearest neighbor

rule for classification /

recognition

mileage
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ApplicationsApplications

“Real World” Example: Image Completion
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ApplicationsApplications

“Real World” Example: Image Completion

• Iteratively fill in pixels with best match

(+ multi scale)

• Typically 5 × 5 … 9 × 9 neighborhoods,

i.e.: dimension 25 … 81

• Performance limited by

nearest neighbor search

• 3D version: dimension 81 … 729
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Higher DimensionsHigher Dimensions
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Higher Dimensions are WeirdHigher Dimensions are Weird

Issues with High-Dimensional Spaces :

• d-dimensional space: 

d independent neighboring

directions to each point

• Volume-distance ratio explodes

d = 1 d = 2 d = 3 d →    ∞

vol(r) ∈∈∈∈ Θ(r d)
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No Grid TricksNo Grid Tricks

Regular Subdivision Techniques Fail

• Regular k-grids contain kd cells

• The “grid trick” does not work

• Adaptive grids usually also

do not help

• Conventional integration 

becomes infeasible (⇒ MC-approx.)

• Finite element function representation

become infeasible

k subdivisions
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More Weird Effects:

• Dart-throwing anomaly

• Normal distributions

gather prob.-mass

in thin shells

• [Bishop 95]

• Nearest neighbor ~ farthest neighbor

• For unstructured points (e.g. iid-random)

• Not true for certain classes of structured data

• [Beyer et al. 99]

Higher Dimensions are WeirdHigher Dimensions are Weird

d = 1..200 d = 1..200
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Johnson-Lindenstrauss
Lemma

Johnson-Lindenstrauss
Lemma
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Johnson-Lindenstrauss LemmaJohnson-Lindenstrauss Lemma

JL-Lemma: [Dasgupta et al. 99]

• Point set P in Rd, n := #P

• There is   f : Rd → Rk, k ∈ O(ε -2 ln n)

(k ≥ 4(ε 2/2 – ε 3/3)-1 ln n)

• …that preserves all inter-point distances

up to a factor of  (1 + ε)

Random orthogonal linear projection

works with probability ≥≥≥≥ (1-1/n)
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This means…This means…

What Does the JL-Lemma Imply?

Pairwise distances in small point set P

(sub-exponential in d)

can be well-preserved in low-dimensional 

embedding

What does it not say?

Does not imply that the points themselves are 

well-represented (just the pairwise distances)
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ExperimentExperiment
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IntuitionIntuition

Difference Vectors

• Normalize (relative error)

• Pole yields bad 

approximation

• Non-pole area much

larger (high dimension)

• Need large number

of poles (exponential in d)

diff 

good prj. bad prj.

no-go area

good prj.

u
v

diff
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OverviewOverview

Overview

• Introduction

• Locality Sensitive Hashing

• Approximate Nearest Neighbors

• Big picture

• LSH on unit hypercube

- Setup

- Main idea

- Analysis

- Results

• Hash Functions Based on p-Stable

Distributions
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Approximate 
Nearest Neighbors

Approximate 
Nearest Neighbors
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ANN: Decision versionANN: Decision version

Input: P, q, r
Output:

• If there is a NN, return yes and output one ANN

• If there is no ANN, return no

• Otherwise, return either
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ANN: Decision versionANN: Decision version

Input: P, q, r
Output:

• If there is a NN, return yes and output one ANN

• If there is no ANN, return no

• Otherwise, return either
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ANN: Decision versionANN: Decision version

General ANN 

PLEB

Decision version + Binary search

c
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LSH

Kd-tree

Vornoi

Preprocessing 
time

Space 
used

Query time

( )nnO log

ANN: previous resultsANN: previous results

( )nnO logρ ( )ρ+1
nO ( )nnO log1 ρ+

( )nO
d log2

( )nO
d log2 ( )nO

( )2/d
nO ( )2/d

nO
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LSH: Big pictureLSH: Big picture
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Locality Sensitive HashingLocality Sensitive Hashing

• Remember: solving decision ANN

• Input:

• No. of points: n

• Number of dimensions: d

• Point set: P

• Query point: q
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LSH: Big PictureLSH: Big Picture

• Family of hash functions:

• Close points to same buckets

• Faraway points to different 

buckets

• Choose a random function 
and hash P

• Only store non-empty 
buckets
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LSH: Big PictureLSH: Big Picture

• Hash q in the table

• Test every point in q’s
bucket for ANN

• Problem: 

• q’s bucket may be empty
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LSH: Big PictureLSH: Big Picture

• Solution: 

• Use a number of hash tables!

• We are done if any ANN is found
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LSH: Big PictureLSH: Big Picture

• Problem: 

• Poor resolution à too many candidates!

• Stop after reaching a limit, small probability
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LSH: Big PictureLSH: Big Picture

• Want to find a hash function:

• h is randomly picked from a family

• Choose 

[ ]
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LSH on unit 
Hypercube

LSH on unit 
Hypercube
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Setup: unit hypercubeSetup: unit hypercube

• Points lie on hypercube: Hd = {0,1}d

• Every point is a binary string 

• Hamming distance (r):

• Number of different coordinates
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Setup: unit hypercubeSetup: unit hypercube

• Points lie on hypercube: Hd = {0,1}d

• Every point is a binary string 

• Hamming distance (r):

• Number of different coordinates
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Main ideaMain idea
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Hash functions for hypercubeHash functions for hypercube

• Define family F:

• Intuition: compare a random coordinate

• Called:

( )
( )

d

r

d

r

di
d

HdbbbibbihFh

bbb
d

H d

)1(
1    ,1

,,1for  , ,,1)(:

,,point  , Hypercube :Given 1

εβα +−=−=





 =∈==∈

=

KK

K

( ) family sensitive-,),1(, βαε+rr



37

Hash functions for hypercubeHash functions for hypercube

• Define family G:

• Intuition: Compare k random coordinates

• Choose k later – logarithmic in n ß J-L lemma
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Constructing hash tablesConstructing hash tables

• Choose uniformly at random from G

• Constructing     hash tables, hash P

• Will choose     later

τgg ,,
1
K

τ

1g
2g τg

τ
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LSH: ANN algorithmLSH: ANN algorithm

• Hash q into each

• Check colliding nodes for ANN

• Stop if more than      collisions, return fail

τgg ,,
1
K

1g
2g τg

τ4
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Details…Details…
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Choosing parametersChoosing parameters

• Choose k and     to ensure constant probability of:

• Finding an ANN if there is a NN

• Few collisions             when there is no ANN

τ
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Analysis of LSHAnalysis of LSH

• Probability of finding an ANN if there is a NN

• Consider a point                     and a hash function G
i

g ∈
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Analysis of LSHAnalysis of LSH

• Probability of finding an ANN if there is a NN

• Consider a point                     and a hash function G
i
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Analysis of LSHAnalysis of LSH

• Probability of collision if there is no ANN

• Consider a point                             and a hash function Gg ∈

[ ]

n
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Analysis of LSHAnalysis of LSH

• Probability of collision if there is no ANN

• Consider a point                             and a hash function Gg ∈( ))1(, ε+∉ rqBp
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ResultsResults
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Complexity of LSHComplexity of LSH

• Given: 

• Can answer Decision-ANN with:

• Show:

( ) Hypercubefor family  sensitive-,),1(, βαε+rr

query time 

space 
1








 ++

ρ

ρ

dnO

ndnO

εεβ
αρ

+
≤




 +−





==

1

1

d

)r(1
1ln 

d

r
-1ln 

1/ln 

1/ln 



48

Complexity of LSHComplexity of LSH

• Given: 

• Can answer Decision-ANN with:

( ) Hypercubefor family  sensitive-,),1(, βαε+rr
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Complexity of LSHComplexity of LSH

• Can amplify success probability 

• Build structures

• Can answer Decision-ANN with:

query time log
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space log
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Complexity of LSHComplexity of LSH

• Can answer ANN on the Hypercube: 

• Build structures with 

query time log1log
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LSH - SummaryLSH - Summary

• Randomized Monte-Carlo algorithm for ANN 

• First truly sub-linear query time for ANN

• Need to examine only logarithmic number of 
coordinates

• Can be extended to any metric space if we can find a 
hash function for it!

• Easy to update dynamically

• Can reduce ANN in Rd to ANN on hypercube
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OverviewOverview

Overview

• Introduction

• Locality Sensitive Hashing

• Hash Functions Based on p-Stable

Distributions

• The basic idea

• The details (more formal)

• Analysis, experimental results
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LSH by Random ProjectionsLSH by Random Projections

Idea:

• Hash function is a projection to a line

of random orientation

• One composite hash function is a random grid

• Hashing buckets are grid cells

• Multiple grids are used for prob. amplification

• Jitter grid offset randomly (check only one cell)

• Double hashing: Do not store empty grid cells
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LSH by Random ProjectionsLSH by Random Projections

Basic Idea:
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LSH by Random ProjectionsLSH by Random Projections

Questions:

• What distribution should be used for the 

projection vectors?

• What is a good bucket size?

• Local sensitivity:

• How many lines per grid?

• How many hash grids overall?

• Depends on sensitivity (as explained before)

• How efficient is this scheme?
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The DetailsThe Details
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p-Stable Distributionsp-Stable Distributions

Distribution for the Projection Vectors:

• Need to make the projection process formally 

accessible

• Mathematical tool: p-stable distributions
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p-Stable Distributionsp-Stable Distributions

p-Stable Distributions:

A prob. distribution D is called p-stable  :⇔
• For any v1, … ,vn ∈ R
• And i.i.d. random variables X1, … ,Xn ~ D

ΣviXi has the same distribution as  Σ |vi |
p

1/p
X

where X ~ D

i i
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Gaussian DistributionGaussian Distribution

Gaussian Normal Distributions are 2-stable

x1

x2
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Other distributions:

• Cauchy distribution               

is 1-stable

(must have infinite variance

so that the central limit theorem is not violated)

• Distributions exists for p ∈ (0,2]

• No closed form, but can be sampled

• Sampling sufficient for LSH-algorithm

More General DistributionsMore General Distributions

)1(

1
2x+π
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ProjectionProjection

Projection Algorithm:

• Chose p according to metric of the space lp

• Compute vector with entries according to a

p-stable distribution

[for example: Gaussian noise entries]

• Each vector vi yields a hash function hi

• Compute: 



 +

=
r

bxv
xh

i

i

,
)(

random value

∈ [0…r ]

bucket size
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ln

ln

β
α=ρ

Locality Sensitive HFLocality Sensitive HF

Locality Sensitive Hash Functions

H = {h: S → U} is (r1, r2, α, β)-sensitive :⇔

v ∈ B(q, r1)  ⇒ Pr(collision(p,q)) ≥ α
v ∉ B(q, r2)  ⇒ Pr(collision(p,q)) ≤ β

Performance

(O(dn + n1+ρ) space, O(dnρ) query time)
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Locality SensitivityLocality Sensitivity

Computing the Locality “Sensitivity”

Distance c = ||v1 - v2||p

cX-distributed, X from p-stable distr.

The constructed family of hash functions is

(r1, r2, α, β)-sensitive for 

α = p(1), β = p(c), r2/r1 = c

dt
r

t
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buckethit
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Numerical ComputationNumerical Computation

,  O(dn + n1+ρ) space, O(dnρ) query time

[Datar et al. 04] [Datar et al. 04]l1 l2

Numerical result: ρ ~ 1/c = 1/(1+ε)

=ρ
ln

ln

β
α
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Numerical ComputationNumerical Computation

[Datar et al. 04] [Datar et al. 04]l1 l2

Width Parameter r

• Intuitively: In the range of ball radius

• Num. result: not too small (too large increases k)

• Practice: factor 4 (E2LSH manual)
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Experimental 
Results

Experimental 
Results



67

LSH vs. ANNLSH vs. ANN

Comparison with ANN (Mount, Arya, kD/BBD-trees)

MNIST handwritten digits, 60000×282 pix (d=784)

[Datar et al. 04]
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LSH vs. ANNLSH vs. ANN

Remarks:

• ANN with c = 10 is comparably fast and 65% correct, 

but there are no guarantees [Indyk]

• LSH needs more memory:

1.2GB vs. 360MB [Indyk]

• Empirically, LSH shows linear performance when 

forced to use linear memory [Goldstein et al. 05]

• Benchmark searches only for points in the data set, 

LSH is much slower for negative results

[Goldstein et al. 05, report ~1.5 ord. of mag.]


