
Approximate Nearest
Neighbor via Point-

Location among Balls

Outline

• Problem and Motivation

• Related Work

• Background Techniques

• Method of Har-Peled (in notes)

Problem

• P is a set of points in a
metric space.

• Build a data structure to
efficiently search ANN

P

Motivation

• Nearest Neighbor Search has lots of
applications.

• Curse of dimensionality

- Voronoi diagram method exponential in
dimension.

• Settle for approximate answers.

Related Work

• Indyk and Motwani

• Approximate Nearest
Neighbors: Towards Removing
the Curse of Dimensionality

• Reduced ANN to Approximate
Point-Location among Equal
Balls.

• Polynomial construction time.

• Sublinear query time.

Related Work

• Har-Peled

• A Replacement for Voronoi
Diagrams of Near Linear Size

• Simplified and improved Indyk-
Motwani reduction.

- Better construction and
query time.

Related Work

• Sabharwal, Sharma and Sen

• Nearest Neighbors Search
using Point Location in Balls
with applications to
approximate Voronoi
Decompositions.

• Improved number of balls by a
logarithmic factor.

• Also a complex construction
which only requires O(n) balls.

Metric Spaces

• Pair (X,d)

• d: X × X ➝ [0,∞)

• d(x,y) = 0 iff x = y

• d(x,y) = d(y,x)

• d(x,y) + d(y,z) ≥ d(x,z)

x

y

z

X

d(y,x)

d(x,y)

d(x,z) d(y,z)

Hierarchically well-
Separated Tree (HST)

• Each vertex u has a label
∆u ≥ 0.

• ∆u = 0 iff u is a leaf.

• If a vertex u is a child of a
vertex v, then ∆u ≤ ∆v.

• Distance between two
leaves u,v is defined as
∆lca(u,v) where lca is the
least common ancestor. 0 0

0 0 04

5 8

9

Hierarchically well-
Separated Tree (HST)

• Each vertex u has a
representative
descendant leaf repu.

• repu ∈ {repv | v is a child

of u}.

• If u is a leaf, then repu = u.

0 0

0 0 04

5 8

9

Metric t-approximation

• A metric N t-
approximates a metric M,
if they are on the same
set of points, and dM(x,y)
≤ dN(x,y) ≤ tdM(x,y) for
any points x,y.

x

yX
dM(x,y)

dN(x,y)

Any n-point metric is 2
(n-1)-approximated by

some HST
x

yX
dM(x,y)

x

y

dH(x,y)

≈

First Step: Compute a 2-
spanner

• Given a metric space M, a
2-spanner is a weighted
graph G whose vertices
are the point of M and
whose shortest path
metric 2-approximates M.

• dM(x,y)≤ dG(x,y) ≤ 2dM

(x,y) for all x,y.

• Can be computed in O
(nlogn) time — Details in
Chapter 4.

Construct a HST which
(n-1)-approximates the

2-spanner

• Compute the minimum
spanning tree of G, the 2-
spanner

1

2

1
1

1 2

Construct a HST which
(n-1)-approximates the

2-spanner

• Construct the HST using
a variation of Kruskal’s
algorithm

• Order the edges in non-
decreasing order.

1

2

1
1

1 2

Construct a HST which
(n-1)-approximates the

2-spanner

• Start with n 1-element
HSTs.

1

2

1
1

1

Construct a HST which
(n-1)-approximates the

2-spanner

• Add the edges one by
one, and merge
corresponding HSTs by
adding a parent node with
∆ label equal to (n-1)
times the edge’s weight.

1

2

1
1

1

5

Construct a HST which
(n-1)-approximates the

2-spanner

• Add the edges one by
one, and merge
corresponding HSTs by
adding a parent node with
∆ label equal to (n-1)
times the edge’s weight.

1

2

1
1

1

5 5

Construct a HST which
(n-1)-approximates the

2-spanner

• Add the edges one by
one, and merge
corresponding HSTs by
adding a parent node with
∆ label equal to (n-1)
times the edge’s weight.

1

2

1
1

1

5
5

5

Construct a HST which
(n-1)-approximates the

2-spanner

• Add the edges one by
one, and merge
corresponding HSTs by
adding a parent node with
∆ label equal to (n-1)
times the edge’s weight.

1

2

1
1

1

5
5

5

5

Construct a HST which
(n-1)-approximates the

2-spanner

• Add the edges one by
one, and merge
corresponding HSTs by
adding a parent node with
∆ label equal to (n-1)
times the edge’s weight.

1

2

1
1

1

5
5

5

5
10

The HST (n-1)-
approximates the 2-

spanner

• Consider vertices x and y
in the graph and the first
edge e that connects
their respective
connected components.

5
5

5

5

1

2

1
1

1

x

y

x y

The HST (n-1)-
approximates the 2-

spanner
• Let C be the connected

component containing x
and y after e is added.

• w(e) ≤ dG(x,y) ≤ (|C|-1)w
(e) ≤ (n-1)w(e) = dH(x,y)

• dG(x,y) ≤ dH(x,y) ≤ (n-1)
dG(x,y)

5
5

5

5

1

2

1
1

1

x

y

x y

Any n-point metric is 2
(n-1)-approximated by

some HST

1

2

1
1

1 2 5
5

5

5
10

≈ ≈

Target Balls
• Let B be a set of balls

such that the union of the
balls in B contains the
metric space M.

• For a point q in M, the
target ball of q in B,
denoted ⊙☉B(q), is the
smallest ball in B that
contains q.

• We want to reduce ANN
to target ball queries.

A Trivial Result — Using
Balls to Find ANN

• Let B(P,r) be the set of
balls of radius r around
each point p in P.

• Let B be the union of B(P,
(1+∊)i) where i ranges

from −∞ to ∞.

• For a point q, let p be the
center of b = ⊙☉B(q).
Then p is (1+∊)-ANN to

q.

qp

b

A Trivial Result — Using
Balls to Find ANN

• Let s be the nearest
neighbor to q in P.

• Let r = d(s,q).

• Fix i such that (1+ε)i < r
≤ (1+ε)i+1

• Radius of b > (1+ε)i

• d(s,q) ≤ d(p,q) ≤ (1+ε)i+1

≤ (1+ε)d(s,q)

p q

s

r

b

What We Need to Fix

• This works, but has unbounded complexity.

• We want the number of balls we need to
check to be linear.

• We first try limiting the range of the radii of
the balls.

• First, we need to figure out how to handle a
range of distances.

Near-Neighbor Data
Structure (NNbr)

• Let d(q,P) be the infinum
of d(q,p) for p ∈ P.

• NNbr(P,r) is a data
structure, such that when
given a query point q, it
can decide if d(q,P) ≤ r.

• If d(q,P) ≤ r, NNbr(P,r) also
returns a witness point p
such that d(q,p) ≤ r.

p
y

rNNbr(P,r) returns
p on query y

P

Near-Neighbor Data
Structure (NNbr)

• Can be realized by n balls
of radius r around the
points of P.

• Perform target ball
queries on this set of
balls.

qp

Interval Near-Neighbor
Data Structure

• NNbr data structure with
exponential jumps in
range.

• Ni = NNbr(P, (1+∊)ia)

• M = log1+∊(b/a)

• I(P,a,b,∊) = {N0, ..., NM}

Interval Near-Neighbor
Data Structure

• log1+∊(b/a) = O(log(b/a)/

log(1+∊)) = O(∊-1log(b/

a)) NNbr data structures.

• O(∊-1nlog(b/a)) balls.

Using Interval NNbr to
find ANN

• First check boundaries: O
(1) NNbr queries, O(n)
target ball queries.

• Then, do binary search on
the M NNbr’s. This is O
(log(∊-1log(b/a))) NNbr

queries, or O(nlog(∊-1log

(b/a))) target ball queries.

• Fast if b/a small.

Faraway Clusters of
Points

• Let Q be a set of m
points.

• Let U be the union of the
balls of radius r around
the points of Q

• Suppose U is connected.

Q

Faraway Clusters of
Points

• Any two points p,q in Q
are in distance ≤ 2r(m-1)
from each other.

• If d(q,Q) > 2mr/δ, any
point of Q is a (1+δ)-
ANN of q in Q.

Q

q

Q

Faraway Clusters of
Points

• Let s be the closest
point in Q to q.

• Let p be any member
of Q

• 2mr/δ < d(q,s) ≤ d(q,p)
≤ d(q,s) + d(s,p) ≤ d(q,s)
+ 2mr ≤ (1+δ)d(q,s)

q

s

> 2mr/δ

p

