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Problem

• P is a set of points in a 
metric space.

• Build a data structure to 
efficiently search ANN

P



Motivation

• Nearest Neighbor Search has lots of 
applications.

• Curse of dimensionality

- Voronoi diagram method exponential in 
dimension.

• Settle for approximate answers.



Related Work

• Indyk and Motwani

• Approximate Nearest 
Neighbors: Towards Removing 
the Curse of Dimensionality

• Reduced ANN to Approximate 
Point-Location among Equal 
Balls.

• Polynomial construction time.

• Sublinear query time.



Related Work

• Har-Peled

• A Replacement for Voronoi 
Diagrams of Near Linear Size

• Simplified and improved Indyk-
Motwani reduction.

- Better construction and 
query time.



Related Work

• Sabharwal, Sharma and Sen

• Nearest Neighbors Search 
using Point Location in Balls 
with applications to 
approximate Voronoi 
Decompositions.

• Improved number of balls by a 
logarithmic factor.

• Also a complex construction 
which only requires O(n) balls.



Metric Spaces

• Pair (X,d)

• d: X × X ➝ [0,∞)

• d(x,y) = 0 iff x = y

• d(x,y) = d(y,x)

• d(x,y) + d(y,z) ≥ d(x,z)
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Hierarchically well-
Separated Tree (HST)

• Each vertex u has a label 
∆u ≥ 0.

• ∆u = 0 iff u is a leaf.

• If a vertex u is a child of a 
vertex v, then ∆u ≤ ∆v.

• Distance between two 
leaves u,v is defined as 
∆lca(u,v) where lca is the 
least common ancestor. 0 0
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Hierarchically well-
Separated Tree (HST)

• Each vertex u has a 
representative 
descendant leaf repu.

• repu ∈ {repv | v is a child 

of u}.

• If u is a leaf, then repu = u.
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Metric t-approximation

• A metric N t-
approximates a metric M, 
if they are on the same 
set of points, and dM(x,y)
≤ dN(x,y) ≤ tdM(x,y) for 
any points x,y.
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Any n-point metric is 2
(n-1)-approximated by 

some HST
x

yX
dM(x,y)
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First Step: Compute a 2-
spanner

• Given a metric space M, a 
2-spanner is a weighted 
graph G whose vertices 
are the point of M and 
whose shortest path 
metric 2-approximates M.

• dM(x,y)≤ dG(x,y) ≤ 2dM

(x,y) for all x,y.

• Can be computed in O
(nlogn) time — Details in 
Chapter 4.



Construct a HST which 
(n-1)-approximates the 

2-spanner

• Compute the minimum 
spanning tree of G, the 2-
spanner
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Construct a HST which 
(n-1)-approximates the 

2-spanner

• Construct the HST using 
a variation of Kruskal’s 
algorithm

• Order the edges in non-
decreasing order.
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Construct a HST which 
(n-1)-approximates the 

2-spanner

• Start with n 1-element 
HSTs.
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Construct a HST which 
(n-1)-approximates the 

2-spanner

• Add the edges one by 
one, and merge 
corresponding HSTs by 
adding a parent node with 
∆ label equal to (n-1) 
times the edge’s weight.
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Construct a HST which 
(n-1)-approximates the 

2-spanner

• Add the edges one by 
one, and merge 
corresponding HSTs by 
adding a parent node with 
∆ label equal to (n-1) 
times the edge’s weight.
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The HST (n-1)-
approximates the 2-

spanner

• Consider vertices x and y 
in the graph and the first 
edge e that connects 
their respective 
connected components.
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The HST (n-1)-
approximates the 2-

spanner
• Let C be the connected 

component containing x 
and y after e is added.

• w(e) ≤ dG(x,y) ≤ (|C|-1)w
(e) ≤ (n-1)w(e) = dH(x,y)

• dG(x,y) ≤ dH(x,y) ≤ (n-1)
dG(x,y)
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Any n-point metric is 2
(n-1)-approximated by 

some HST
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Target Balls
• Let B be a set of balls 

such that the union of the 
balls in B contains the 
metric space M.

• For a point q in M, the 
target ball of q in B, 
denoted ⊙☉B(q), is the 
smallest ball in B that 
contains q.

• We want to reduce ANN 
to target ball queries.



A Trivial Result — Using 
Balls to Find ANN

• Let B(P,r) be the set of 
balls of radius r around 
each point p in P.

• Let B be the union of B(P,
(1+∊)i) where i ranges 

from −∞ to ∞.

• For a point q, let p be the 
center of b = ⊙☉B(q). 
Then p is (1+∊)-ANN to 

q.

qp

b



A Trivial Result — Using 
Balls to Find ANN

• Let s be the nearest 
neighbor to q in P.

• Let r = d(s,q).

• Fix i such that (1+ε)i < r 
≤ (1+ε)i+1 

• Radius of b > (1+ε)i

• d(s,q) ≤ d(p,q) ≤ (1+ε)i+1 

≤ (1+ε)d(s,q)

p q

s

r

b



What We Need to Fix

• This works, but has unbounded complexity.

• We want the number of balls we need to 
check to be linear.

• We first try limiting the range of the radii of 
the balls.

• First, we need to figure out how to handle a 
range of distances.



Near-Neighbor Data 
Structure (NNbr)

• Let d(q,P) be the infinum 
of d(q,p) for p ∈ P.

• NNbr(P,r) is a data 
structure, such that when 
given a query point q, it 
can decide if d(q,P) ≤ r.

• If  d(q,P) ≤ r, NNbr(P,r) also 
returns a witness point p 
such that d(q,p) ≤ r.

p
y

rNNbr(P,r) returns
p on query y

P



Near-Neighbor Data 
Structure (NNbr)

• Can be realized by n balls 
of radius r around the 
points of P.

• Perform target ball 
queries on this set of 
balls.

qp



Interval Near-Neighbor 
Data Structure

• NNbr data structure with 
exponential jumps in 
range.

• Ni = NNbr(P, (1+∊)ia)

• M = log1+∊(b/a)

• I(P,a,b,∊) = {N0, ..., NM}



Interval Near-Neighbor 
Data Structure

• log1+∊(b/a) = O(log(b/a)/

log(1+∊)) = O(∊-1log(b/

a)) NNbr data structures.

• O(∊-1nlog(b/a)) balls.



Using Interval NNbr to 
find ANN

• First check boundaries: O
(1) NNbr queries, O(n) 
target ball queries.

• Then, do binary search on 
the M NNbr’s. This is O
(log(∊-1log(b/a))) NNbr 

queries, or O(nlog(∊-1log

(b/a))) target ball queries.

• Fast if b/a small.



Faraway Clusters of 
Points

• Let Q be a set of m 
points.

• Let U be the union of the 
balls of radius r around 
the points of Q

• Suppose U is connected.

Q



Faraway Clusters of 
Points

• Any two points p,q in Q 
are in distance ≤ 2r(m-1) 
from each other.

• If d(q,Q) > 2mr/δ, any 
point of Q is a (1+δ)-
ANN of q in Q.

Q

q
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Faraway Clusters of 
Points

• Let s be the closest 
point in Q to q.

• Let p be any member 
of Q

• 2mr/δ < d(q,s) ≤ d(q,p) 
≤ d(q,s) + d(s,p) ≤ d(q,s) 
+ 2mr ≤ (1+δ)d(q,s)

q
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