
Homework 1: Discrete and Smooth Curves
Differential Geometry for Computer Science (Spring 2013), Stanford University

Due Monday, April 15, in class

This is the first homework assignment for CS 468. We will have assignments
approximately every two weeks. Check the course website for assignment
materials and the late policy. Although you may discuss problems with your
peers in CS 468, your homework is expected to be your own work.

Problem 1 (20 points). Consider the parametrized curve γ(s) :=
(
a cos(s/L), a sin(s/L), bs/L

)
for

s ∈ R, where the numbers a, b, L ∈ R satisfy a2 + b2 = L2.

(a) Show that the parameter s is the arc-length and find an expression for the length of γ for s ∈ [0, L].

(b) Determine the geodesic curvature vector, geodesic curvature, torsion, normal, and binormal of γ.

(c) Determine the osculating plane of γ.

(d) Show that the lines containing the normal N(s) and passing through γ(s) meet the z-axis under a
constant angle equal to π/2.

(e) Show that the tangent lines to γ make a constant angle with the z-axis.

Problem 2 (10 points). Let γ : I → R3 be a curve parametrized by arc length. Show that the torsion of γ
is given by

τ(s) = −〈γ̇(s)× γ̈(s),
...
γ(s)〉

|kγ(s)|2

where × is the vector cross product.

Problem 3 (20 points). Let γ : I → R3 be a curve and let γ̃ : I → R3 be the reparametrization of γ
defined by γ̃ := γ ◦ φ where φ : I → I is a diffeomorphism. Find a formula relating the geodesic curvature
vector of γ̃ to the geodesic curvature vector of γ and to φ. Argue that the formula you’ve found shows that
geodesic curvature is “invariant under reparametrizations” and depends only on the “geometry” of γ.

Problem 4 (20 points). In this problem we will introduce you to continuous and discrete approaches to
variational calculus, one of the main tools of the differential geometry toolbox.

(a) Suppose you are given a regular plane curve γ : [0, 1]→ R2, and take V : [0, 1]→ R2 to be a vector
field along γ. Recall that the arc length of γ is given by

s[γ] =
∫ 1

0
‖γ′(t)‖ dt.

We can think of γ(t) + hV(t) to be a displacement of γ along V. Differentiate s[γ + hV] to yield
d

dh s[γ + hV]|h=0.
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(b) You can think of each V as a “variation” of the entire curve γ at once. Explain how the derivative
you took in (a) can be thought of as a directional derivative of arc length in the V : [0, 1] → R2

“direction.”

(c) Assume V(0) = V(1) = 0 and use integration by parts to write d
dh s[γ + hV]|h=0 =

∫ 1
0 〈V, W〉 dt

where W : [0, 1] → R2 can be written in terms of γ and its derivatives. Conclude by describing the
variational gradient of arc length and the best direction to flow γ to increase/decrease its arc length.

(d) Now, assume we have a discrete curve given by a series of points x0, x1, ..., xn ∈ R2. You can think
of “stacking” all these points in a single vector to describe your curve as one point in R2n. Describe
the arc length functional s̄ : R2n → R and take its gradient to find a discrete answer paralleling your
answer to (c). In particular, write an expression for the derivative of arc length with respect to xi for
0 < i < n, and show that its norm is 2 sin θ

2 for turning angle θ between the segments adjacent to xi.

Problem 5 (15 points). Now, you will make use of your answer to the previous problem to implement a
simple flow.

(a) Take a look at shrinkCurve.m. The code generates an n× 2 array representing n points on a discrete
two-dimensional curve. In part (d) of the previous problem, you computed the gradient of the discrete
arc length s̄. For sufficiently small ∆t, one simple way to decrease the length of the curve would be
to replace each point xi with a new point x′i ≡ xi − (Dxi s̄)∆t, where Dxi s̄ is the derivative of s̄ with
respect to xi (make sure you understand why!). Implement this forward integration scheme, and make
sure that if you run your code long enough the curve becomes a straight line.

(b) Uncomment the segment of code labeled evil curve. Describe the shape of the curve we have pro-
vided. Assume nSamples is large enough that boundary conditions affect the solution minimally for
the time scale we’re interested in. Describe the dependence of the behavior of our time stepping scheme
from part (a) on the time step ∆t.

(c) Suppose you are are able to choose ∆t “properly,” so that eventually the curve approaches a straight
line.1 Can we say anything about the distribution of the joints of the curve along the straight line?
Would things be different if we had moved down the gradient of ∑i ‖xi+1 − xi‖2 instead?

Problem 6 (15 points). In this problem you will implement a part of the “Discrete Elastic Rods” paper
discussed in class. Take a look at bishopFrame.m for starter code.

(a) Add code to compute the (n− 2)× 3 array binormal, which contains the Darboux vector (κb)i for
each vertex i except the first and last.

(b) In the second half of the script, we provide simple code for animating different initial choices of the
Bishop frame (u, v, t) on the first segment. Add code to fill in u and v along the rest of the curve.

1Such a choice of ∆t may not always be possible, and you may have to adapt ∆t to the shape of the curve! We’ll
leave such details to CS 205.
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