
Homework 4: DEC and Curvature
Differential Geometry for Computer Science (Spring 2013), Stanford University

Due Wednesday, June 5, in the course mailbox

Problem 1 (30 points).

(a) We defined the coefficients of the Riemann curvature (3, 1)-tensor with respect to the coordinate basis
E1, E2 by

∑
s

R s
ijk Es := ∇Ej∇Ei Ek −∇Ei∇Ej Ek .

Derive the formula

R s
ijk =

∂Γs
jk

∂xi −
∂Γs

ik
∂xj + ∑

t
Γt

jkΓs
it −∑

t
Γt

ikΓs
jt .

(b) We defined the coefficients of the Riemann curvature (4, 0)-tensor by Rijk` := ∑s g`sR s
ijk or equiv-

alently by Rijk` := g(∇Ej∇Ei Ek − ∇Ei∇Ej Ek, E`). Use Gauss’ Theorema Egregium to verify the
so-called symmetries of the curvature tensor:

Rijk` = −Rjik` Rijk` = −Rij`k Rijk` = Rk`ij .

(c) Show that on a 2-dimensional surface, the only independent component of the Riemann curvature
(4, 0)-tensor is R1212. In other words, show that all other components of Rm are either zero or a
multiple of R1212.

(d) Use intrinsic calculations to find the Riemann curvature (4, 0)-tensor of the sphere. (Hints: you get
to choose the parametrization of the sphere — so choose wisely; also you only need to compute R1212!)

(e) Find the Gauss curvature of the sphere via the second fundamental form. Compare with part (d) and
verify Gauss’ Theorema Egregium.

Problem 2 (20 points). Differential geometry is all about finding good local coordinate systems for a
surface S which then help prove theorems. For instance, the Gauss-Bonnet theorem uses an orthogonal
parametrization. This is a parametrization φ : U ⊆ R2 → S with the property that g12(x) = 0 for
all x ∈ U . In other words, if Ei := ∂φ

∂xi then 〈E1, E2〉 = 0 at all points on S in the image of φ. (In this
coordinate system, it is not necessarily the case that 〈E1, E1〉 = 〈E2, E2〉 = 1. In fact, if this were to hold,
then S would have a neighbourhood that is isometric to Euclidean space, which can happen if and only if the
Riemann curvature tensor of S is zero inside U .)

Suppose that γ : [−1, 1] → S is a geodesic segment in S. For every s ∈ [0, 1], let N(s) be the unit
vector in Tγ(s)S that is orthogonal to γ̇(s). In this problem, you will prove that the mapping φ(s, t) :=
expγ(s)(tN(s)) for s ∈ (−1, 1) and small t is an orthogonal parametrization of a neighbourhood of γ(0).
In fact, you will do slightly better and show that g12 = 0 and g22 = 1 for all (s, t) in the parameter domain.
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(a) Draw an informative picture. What could go wrong if t is allowed to become too large?

(b) Let E1 := ∂φ
∂s and E2 := ∂φ

∂t . Show that ∇E2 E2 = 0 for all s, t.

(c) Show that ‖E2‖ = 1 for all (s, t). (Hint: why is this true when s is arbitrary and t = 0? Now hold s
fixed and show that ∂

∂t‖E2‖2 = 0 for all t.) Conclude that g22 = 1 for all (s, t).

(d) Show that 〈E1, E2〉 = 0 for all (s, t). (Hint: why is this true when s is arbitrary and t = 0? Now
hold s fixed and show that ∂

∂t 〈E1, E2〉 = 0 for all t.) Conclude that g12 = 0 for all (s, t).

Problem 3 (20 points). The divergence theorem says that for any smooth vector field X on a surface S
with boundary ∂S, we have ∫

S
div(X) dA =

∫
∂S
〈X, N〉 ds .

where dA is the Riemannian area form, N is a unit vector tangent to S but normal to ∂S, and we must use
an arc-length parametrization for ∂S for this equation to hold. Stokes’ Theorem says that for any differential
k-form ω and (k + 1)-dimensional submanifold c ⊆ S we have∫

∂c
ω =

∫
c

dω .

In this problem, you will show that Stokes’ Theorem implies the divergence theorem for a well-chosen ω. This
is a straightforward problem that the unfamiliar notation of differential forms and sharp/flat/star operators
may make quite difficult. Do your best!

(a) Show that div(X) = − ∗ d ∗ (X[). Hint: you need to show this at an arbitrary point p ∈ S using
your favourite coordinate system. So work in geodesic normal coordinates centered at p.

(b) Explain why div(X)dA can be put in the form dω for some form ω, and what is ω?

(c) Apply Stokes’ Theorem to dω and S itself. We thus get
∫

S div(X)dA =
∫

∂S ω. To develop the
right hand side further, you must know how to evaluate the “line integral”

∫
∂S ω. Suppose that

we can parametrize the boundary ∂S by arc-length as a curve γ : [0, `] → S with tangent vector
T(s) := γ̇(s). Now

∫
∂S ω is defined to be

∫ `
0 ω(T(s))ds. Show that ω(T) = 〈X, N〉 where N is the

vector obtained by rotating T counterclockwise by π/2.

Problem 4 (15 points). Recall that the Helmholtz-Hodge decomposition of a one-form ω is given by ω =
δβ + dα + γ, where dγ = 0 and δγ = 0. In lecture we argued that you can find the Helmholtz-Hodge
decomposition in DEC by solving δdα = δω and dδβ = dω (and taking γ = ω− δβ− dα).

(a) Argue that the operators δd and dδ have null spaces for closed triangulated surfaces. Why isn’t this a
hole in our technique?

(b) Compute helmholtzHodge.m implementing this technique and visualize the results using problem4.m.
Notice that we have kindly provided discreteExteriorCalculus.m implementing the DEC ma-
trices you will need.

Problem 5 (15 points). As promised, we return to the problem of geodesic computation:
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(a) When does the planar front approximation made in the fast marching algorithm behave well? When
does it behave poorly?

(b) In 2002, Novotni and Klein proposed using a circular wavefront rather than a planar wavefront
in fast marching. For the most part, the algorithm remains the same, since it is a simple extension
of Dijkstra’s algorithm for shortest paths, but the update step must be changed. Without loss of
generality, we’ll embed three vertices of a triangle being updated onto the plane at positions v1 ≡ 0,
v2 ≡ (v2x, 0), and v3 = (v3x, v3y) with v3y ≥ 0 (make sure you understand why such an embedding
is possible); we know distances d1 and d2 but want to find d3.

(i) Given d1 and d2, write and solve a system of equations for finding the source point (x, y) of the
circular wavefront.

(ii) Your system from (i) should be quadratic and thus yields two solutions. Provide a rule for
choosing one of the two roots to give a single point (x, y), and give an expression for d3.
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