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Complicating Factor

Local vs. global optlmallty



Reality Check
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Extrinsic may suffice for near vs. far
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https://www.ceremade.dauphine.fr/~peyre/teaching/manifold/tp3.html http://www.sciencedirect.com/science/article/pii/S0010448511002260
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Useful Approxima

http://www.cse.ohio-state.edu/~tamaldey/isotopic.html

Meshes are graphs



Pernicious Test Case










Distances




What Happened

Asymmetric
Anisotropic

May not improve
under refinement



Conclusion 1

Graph shortest-path does
not always converge to
geodesic distance.



Conclusion 1.5

Graph shortest-path does
not always converge to
geodesic distance.

pﬁe/( an aceep table %omx/}xa tion,



Conclusion 2

Graph shortest path
algorithms are
well-understood.



Useful Principles

“Shortest path had to
come from somewhere.”

“"All steps of a shortest
path are optimal.”



Dijkstra’s Algorithm

Vo = Source vertex
d; = Current distance to vertex ¢

S = Vertices with known optimal distance

Initialization:
do =0

d; =00 Vi >0
S={}



Dijkstra’s Algorithm

Vo = Source vertex
d; = Current distance to vertex ¢

S = Vertices with known optimal distance

Iteration k:
k=argmin, cy\g di
S <+ vy
dy < min{dy, dx + dge} V neighbors vy of vy



Dijkstra’s Algorithm

Vo = Source vertex
d; = Current distance to vertex ¢

S = Vertices with known optimal distance

Iteration k:
k=argmin, cy\g di
S <+ vy
dy < min{dy, dx + dge} V neighbors vy of vy

During each iteration, S
remains optimal.




Advancing Fronts







Fast Marching

Dijkstra’s algorithm,
modified to approximate
geodesic distances.



Problem




Planar Front Approximation
i




At Local Scale




Planar Calculations

CZ: 7 X + plaxs

Find:

ds=7'F+p=p




Planar Calculations
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d=m'X + plaxa
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Planar Calculations

1 =p* 19,,Qloys —2p-15,Qd+d' Qd

Quadratic equation for p
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Two Roots




Larger Root: Consistent

Two orientations for the normal



Additional Issue

T1 L2

f Nonrigid Shapes

Front from outside the triangle



Condition for Front Direction

T1 L2

eometry of Nonrigid Shapes

Front from outside the triangle



Obtuse Triangles

ometry of Nonrigid Shapes

Must reach x, after x, and x,



Fixing the Issues

Alternative edge-based update:
ds < min{ds,dy + ||z1|], d2 + ||z2]| }

Add connections as needed
[Kimmel and Sethian 1998]

Obstuse angle
and splitfing section



Summary: Update Step

b2
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input : non-obtuse triangle with the vertices x1, x2, r3, and the
corresponding arrival times dq, ds, ds
output . updated ds

Solve the quadratic equation

12“0.«“\/ 1T .Qd)?2 — 1T, Qlax: - (dTQd — 1)
glelle '

p=

where V' = (r1 — 23,22 — 3), and d = (d1, d.;g)T
Compute the front propagation direction n = V=1 (d — p- 1oy 1)

if (VIV)"'VThn <0 then

ds «—— min{ds, p}
else

ds «—— min{ds, dy + ||x1]], d2 + ||z2]|}
end

Bronstein, Numerical Geometry of Nonrigid Shapes



Fast Marching vs. Dijkstra

Modified update step

Update all triangles
adjacent to a given vertex



Eikonal Equation

|Vd]| =1

Greek: “Image”

Solutions are geodesic distance



A WARNING

STILL AN
APPROXIMATION




A WARNING

STILL AN
APPROXIMATION




Modifying Fast Marching

[Novotni and Klein 2002]:
Circular wavefront



Modifying Fast Marching

eometry of Nonrigid Shapes

Grids and parameterized surfaces



Alternative to Eikonal Equation

Algorithm 1 The Heat Method

I. Integrate the heat flow @« = Aw for time ¢.
[1. Evaluate the vector field X = —Vu/|Vul.
III. Solve the Poisson equation A¢ = V - X,

Crane, Weischedel, and Wardetzky. “Geodesics in Heat.” TOG, to appear.



Tracing Geodesic Curves

Trace gradient of distance function



Initial Value Problem

Polthier and Schmies. “Shortest Geodesics on Polyhedral Surfaces.”
SIGGRAPH course notes 2006.

Trace a single geodesic exactly



Initial Value Problem

Polthier and Schmies. “Shortest Geodesics on Polyhedral Surfaces.”
SIGGRAPH course notes 2006.

Trace a single geodesic exactly



Exact Geodesics

SIAM J. COMPUT. 1987 Society for Industrial and Applied Mathematics
Vol. 16, No. 4, August 1987 005

THE DISCRETE GEODESIC PROBLEM*

JOSEPH S. B. MITCHELL?t, DAVID M. MOUNT+ AND CHRISTOS H. PAPADIMITRIOUS§

Abstract. We present an algorithm for determining the shortest path between a source and a destination
on an arbitrary (possibly nonconvex) polyhedral surface. The path is constrained to lie on the surface, and
distances are measured according to the Euclidean metric. Our algorithm runs in time O(n®logn) and
requires O(n?) space, where n is the number of edges of the surface. After we run our algorithm, the distance
from the source to any other destination may be determined using standard techniques in time O(log n) by
locating the destination in the subdivision created by the algorithm. The actual shortest path from the source
to a destination can be reported in time O(k+log n), where k is the number of faces crossed by the path.
The algorithm generalizes to the case of multiple source points to build the Voronoi diagram on the surface,
where n is now the maximum of the number of vertices and the number of sources.

Key words. shortest paths, computational geometry, geodesics, Dijkstra’s algorithm

AMS(MOS) subject classification. 68E99



MMP Algorithm: Big ldea

w

Surazhsky et al. “Fast Exact and Approximate Geodesics on Meshes.” SIGGRAPH 2005.



Practical Implementation

Fast Exact and Approximate Geodesics on Meshes

Vitaly Surazhsky

University of Osle

Tatiana Surazhsky
University of Oslo

Abstract

The computation of geodesic paths and distances on triangle
meshes 15 a common operation m many computer graphics applica-
tions. We present several practical algorithms for computing such
geodesics from a source point to one or all other points efficiently.
First, we describe an implementation of the exact “single source,
all destination™ algorithm presented by Mitchell. Mount, and Pa-
padimitrion (MMP). We show that the algorithm runs much faster
in practice than suggested by worst case analysis. Next, we extend
the algorithm with a merging operation to obtain computationally
efficient and accurate approximations with bounded error. Finally,
to compute the shortest path between two given points, we use a
lower-bound property of our approximate geodesic algorithm to ef-
ficiently prune the frontier of the MMP algorithm, thereby obtain-
ing an exact solution even more quickly.

Keywords: shortest path, geodesic distance.

1 Introduction

In this paper we present practical methods for computing both exact
and approximate shortest (Le. geodesic) paths on a triangle mesh.
These geodesic paths typically cut across faces in the mesh and are
therefore not found by the traditional graph-based Dijkstra aloo-
rithm for shortest paths.

The computation of geodesic paths
computer graphics applications.

mesh often inmvolves cutting the
(e [Ershnamurthy and Levov 1906; Sander et al. 20037, and

Daml Kirsanov

Harvard University

Steven J. Gortler

Harvard University

Hugues Hoppe

Microsoft Fesearch

Figure 1: Geodesic paths from a source veriex, and isolines of the
geodesic distance function.

tance function over the edges, the implementation is actually prac-
tical even though, to our knowledge, it has never been done pre-
viously. We demeonstrate that the algonthm’s worst case munning
time of O(n-logn) is pessimistic, and that in practice, the algo-
rithm muns in sub-guadratic time. For instance, we can compute
the exact geodesic distance from a source point to all vertices of a

O{n log n) time even for small error thresholds.



Instability of Geodesics

http://parametricwood2o11.files.wordpress.com/2011/01/cone-with-three-geodesics.png



Cut Locus

Cut point:
Point where geodesic
ceases to be minimizing

http://www.cse.ohio- d/ maldey/paper/geodesic/cutloc.pdf

Set of cut points from a source p



Fuzzy Geodesics

Gy q(2) = exp (—|dm(p, x) + du(z,q) — dum(p, q)|/0)

Function on surface
expressing difference in
triangle inequality

Stable version of geodesic distance



Fuzzy Geodesics

Gy q(2) = exp (—|dm(p, x) + du(z,q) — dum(p, q)|/0)

Function on surface
expressing difference in
triangle inequality

-

Stable version of geodesic distance
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Defect-Tolerant Geodes

Parameterizations.” Eurographics 2011.

Campen and Kobbelt. “"Walking On Broken Mesh



All-Pairs Distances

Geodesic Triangulate
field (Delaunay)

Fix edges (planar
embedding)

Xin, Ying, and He. “Constant-time all-pairs geodesic distance query on triangle meshes.”
13D 2012.
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