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DIFFERENTIAL GEOMETRY
FOR COMPUTER SCIENCE

Lecture 11 — Covariant Differentiation



High-Level Summary

The extrinsic geometry of a surface.
e Variation of the unit normal vector field.

e Second fundamental form (mean and Gauss curvatures, etc.)
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High-Level Summary

The intrinsic geometry of a surface.

e The induced metric — the Euclidean inner product restricted
to each tangent plane.

e Pulls back under a parametrization to g, := [D¢,] " [D¢.].

So far we've seen that intrinsic lengths can be expressed via g.
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Outlook

There's a loose end in the intrinsic geometry story so far:

e The equation satisfied by a length-minimizing curve v C S is
called the geodesic equation:

-

k,y(t) 1 T,y(t)S

e This looks completely extrinsic!

How to resolve this?

e We must show that the geodesic equation is expressible in
terms of g alone. (As a system of second order ODE.)

e This involves a new topic — covariant differentiation on S.



Differentiation in Euclidean Space

o Let V = [V, V2 V3T be a vector in T,R> and let c: | — R3
be a curve with ¢(0) = p and ¢(0) = V.

e Derivative of a scalar function f in the direction of a vector
V = [V V2 V3T is given by

3
Dyf = df (c(t)) _ Z Vi of
t=0 ;=1

dt Ox!

o Derivative of a vector field Y (x) := [Y(x), Y?(x), Y3(x)]" in
the direction of V is given by

Dy Y1

DyY = |DyY?| = |3 vid¥
DVY3 .




Differentiation on a Surface

We can differentiate a function f : S — R at a point p € S in the
direction of a vector V € T,S.

e Find a curve ¢ : | — S with ¢(0) = p and d";,(:)) V.

e Then define Dyf := Sf(c(t))],_,.

Can we do the same for the derivative of a vector field Y : S — TS5?

e No! The vector field %Y(c(t))‘ is not tangent to S.

t=0

Are there alternatives?
e |s there a geometric definition on S?
e Can we use a parametrization ¢ : U — S7

e We'd need to differentiate the coordinate vectors
E; := Do( 8?1,-). What about parameter independence?




Covariant Differentiation

Start with a geometric definition on S.

Let Y be a vector field on S and V,, € T,S a vector.

VvY = [DyY]

Here Dy Y is the Euclidean derivative %Y(C(t))‘t:o where ¢ is a
curve in S such that ¢(0) = p and ¢(0) = V,,.

Note: We have a relationship with the second fundamental form:

DyY = [DyY]" + [DvY] = A(V, V)N + VY



Properties of the Covariant Derivative
As defined, VY depends only on V,, and Y to first order along c.

Also, we have the Five Properties:

1. C®®-linearity in the V-slot:
VvitanY =V, Y +fVy,Y where f : S = R

N

. R-linearity in the Y-slot:
Vv(Yi+aYe)=VyYi+aVy Y, where a € R

3. Product rule in the Y-slot:
Vv(fY)=Ff-VyY +(Vyf) - Y wheref:S =R

4. The metric compatibility property: The Lie bracket
V(Y. Z) =(VvY,Z) + (Y, VvZ) | v, Val(f) := Dy, D, (F)

— Dy, Dy, (f
5. The “torsion-free” property: v2Dw (f)

Defines a vector field, which
Vv, Vo = Vy,Vi = [V, V2] is tangent to S if V4, V5 arel




The View From the Parameter Domain

Let ¢ : U — S be a parametrization with ¢(0) = p. A basis for the

tangent planes Ty ,)S near p is given by E;j(u) := ad’,.
#(u) ou

A calculation:
o Let V, =3, a'Ei(0) and Yy, := >_; b (u)Ei(u)

e The covariant derivative computed using the Five Properties:

VVY VZ a'E, <Z bjE) The Christoffel symbols

:ZQVE; (u)Ej(u)) vas —ZF -

_Z E;) + aibVEE})
—Z(Z a,+z 357} ) i




The Fundamental Lemma of Riemannian Geometry

The induced metric g and the Five Properties determines a unique
covariant derivative called the Levi-Civita connection.

This relationship between g and V is determined by the formula

_ 1(Ogi  Ogx Ogj
ow ou’  Ouk

=5 — > where [y := g(Vg Ej, Ex)

Note: I_f;- => gk‘fr,-jg where gk¢ are the components of g~ 1.




The Geodesic Equation
Recall: The geodesic equation (so far) is the extrinsic equation
ky(t) L TnS
But: We can re-express this as a purely intrinsic equation
k(t) L T,nS & #(t) L TyuS
& Bol=o
& D)l =0
& V() =0

In the parameter domain, this is a system of second order ODEs
with coefficients determined from g.
d’~k dy dy
Y + 7 ay rf(
dt? dt dt Y

v is a geodesic &



The Gradient of a Function

How does one define the gradient of a function?
e We can give a geometric definition using directional derivatives.
e Let c: | — S be a curve with ¢(0) = p and ¢(0) = V. Then

dF(c(t)]
T | =L Y)

e In Euclidean space, Vf(p) = [Df,]". But in the parameter
domain, (-,-) — g so Vf = g~1. Df.

vf

= U
Al




Vector Analysis Operators

The important covariant differential operators on a surface:

Geometric Definition

In the parameter domain

The gradient
of f:S$ =R

Vf st. Dy(f) := (VF, V)

i Of

[Vf] = By

The divergence
of the v.fld. X

VX =) (VeX, E)
J

where E; is an ONB

1

i

V-X::Z[ZX

The Laplacian
of f:S—>R

Af =V - (VFf)

« Of
Uak

Af 72g'][

Note: We have an integration by parts formula:

/fV-XdA:—/(Vf,X>dA+
S S

f(X, figs) d?
oS



