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Lecture 11 — Covariant Differentiation



High-Level Summary

The extrinsic geometry of a surface.

• Variation of the unit normal vector field.

• Second fundamental form (mean and Gauss curvatures, etc.)



High-Level Summary

The intrinsic geometry of a surface.

• The induced metric — the Euclidean inner product restricted
to each tangent plane.

• Pulls back under a parametrization to gu := [Dφu]>[Dφu].

So far we’ve seen that intrinsic lengths can be expressed via g .

length :=

ˆ 1

0

√
[ċ(t)]> ·gc(t) ·[ċ(t)]dt length :=

ˆ 1

0

√
〈γ̇(t), γ̇(t)〉dt



Outlook

There’s a loose end in the intrinsic geometry story so far:

• The equation satisfied by a length-minimizing curve γ ⊂ S is
called the geodesic equation:

~kγ(t) ⊥ Tγ(t)S

• This looks completely extrinsic!

How to resolve this?

• We must show that the geodesic equation is expressible in
terms of g alone. (As a system of second order ODE.)

• This involves a new topic — covariant differentiation on S .



Differentiation in Euclidean Space

• Let V = [V 1,V 2,V 3]> be a vector in TpR3 and let c : I → R3

be a curve with c(0) = p and ċ(0) = V .

• Derivative of a scalar function f in the direction of a vector
V = [V 1,V 2,V 3]> is given by

DV f :=
df (c(t))

dt

∣∣∣∣
t=0

=
3∑

i=1

V i ∂f

∂x i

• Derivative of a vector field Y (x) := [Y 1(x),Y 2(x),Y 3(x)]> in
the direction of V is given by

DVY :=

DVY
1

DVY
2

DVY
3

 =


...∑3

i=1 V
i ∂Y j

∂x i
...





Differentiation on a Surface

We can differentiate a function f : S → R at a point p ∈ S in the
direction of a vector V ∈ TpS .

• Find a curve c : I → S with c(0) = p and dc(0)
dt = V .

• Then define DV f := d
dt f (c(t))

∣∣
t=0

.

Can we do the same for the derivative of a vector field Y : S → TS?

• No! The vector field d
dtY (c(t))

∣∣
t=0

is not tangent to S .

Are there alternatives?

• Is there a geometric definition on S?

• Can we use a parametrization φ : U → S?

• We’d need to differentiate the coordinate vectors
Ei := Dφ( ∂

∂ui
). What about parameter independence?



Covariant Differentiation

Start with a geometric definition on S .

Let Y be a vector field on S and Vp ∈ TpS a vector.

∇VY :=
[
DVY

]‖
Here DVY is the Euclidean derivative d

dtY (c(t))
∣∣
t=0

where c is a
curve in S such that c(0) = p and ċ(0) = Vp.

Note: We have a relationship with the second fundamental form:

DVY =
[
DVY

]⊥
+
[
DVY

]‖
= A(V ,Y )N +∇VY



Properties of the Covariant Derivative

As defined, ∇VY depends only on Vp and Y to first order along c .

Also, we have the Five Properties:

1. C∞-linearity in the V -slot:
∇V1+fV2Y = ∇V1Y + f ∇V2Y where f : S → R

2. R-linearity in the Y -slot:
∇V (Y1 + aY2) = ∇VY1 + a∇VY2 where a ∈ R

3. Product rule in the Y -slot:
∇V (f Y ) = f · ∇VY + (∇V f ) · Y where f : S → R

4. The metric compatibility property:

∇V 〈Y ,Z 〉 = 〈∇VY ,Z 〉+ 〈Y ,∇VZ 〉

5. The “torsion-free” property:

∇V1V2 −∇V2V1 = [V1,V2]

The Lie bracket

[V1,V2](f ) := DV1
DV2

(f )

− DV2
DV1

(f )

Defines a vector field, which
is tangent to S if V1,V2 are!



The View From the Parameter Domain

Let φ : U → S be a parametrization with φ(0) = p. A basis for the
tangent planes Tφ(u)S near p is given by Ei (u) := ∂φ

∂ui
.

A calculation:

• Let Vp =
∑

i a
iEi (0) and Yφ(u) :=

∑
i b

i (u)Ei (u)

• The covariant derivative computed using the Five Properties:

∇VY = ∇∑
i a

iEi

(∑
j

bjEj

)
=
∑
ij

ai∇Ei

(
bj(u)Ej(u)

)
=
∑
ij

ai
(
∇Ei

(bj)Ej) + aibj∇Ei
Ej

)
=
∑
k

(∑
i

ai
∂bk

∂ui
+
∑
ij

aibjΓk
ij

)
Ek

The Christoffel symbols

∇EiEj :=
∑
k

Γk
ijEk



The Fundamental Lemma of Riemannian Geometry

The induced metric g and the Five Properties determines a unique
covariant derivative called the Levi-Civita connection.

This relationship between g and ∇ is determined by the formula

Γijk =
1

2

(
∂gik
∂uj

+
∂gkj
∂ui
−
∂gij
∂uk

)
where Γijk := g(∇Ei

Ej ,Ek)

Note: Γk
ij =

∑
` g

k`Γij` where gk` are the components of g−1.



The Geodesic Equation

Recall: The geodesic equation (so far) is the extrinsic equation

~kγ(t) ⊥ Tγ(t)S

But: We can re-express this as a purely intrinsic equation

~kγ(t) ⊥ Tγ(t)S ⇔ γ̈(t) ⊥ Tγ(t)S

⇔ [γ̈(t)]‖ = 0

⇔ [Dγ̇ γ̇(t)]‖ = 0

⇔ ∇γ̇ γ̇(t) = 0

In the parameter domain, this is a system of second order ODEs
with coefficients determined from g .

γ is a geodesic ⇔ d2γk

dt2
+

dγ i

dt

dγj

dt
Γk
ij = 0



The Gradient of a Function

How does one define the gradient of a function?

• We can give a geometric definition using directional derivatives.

• Let c : I → S be a curve with c(0) = p and ċ(0) = V . Then

df (c(t))

dt

∣∣∣∣
t=0

:= 〈∇f (p),V 〉

• In Euclidean space, ∇f (p) = [Dfp]>. But in the parameter
domain, 〈·, ·〉 → g so ∇f = g−1 · Df .



Vector Analysis Operators

The important covariant differential operators on a surface:

Geometric Definition In the parameter domain

The gradient
of f : S → R

∇f s.t. DV (f ) := 〈∇f ,V 〉 [∇f ]i :=
∑
j

g ij ∂f

∂uj

The divergence
of the v.fld. X

∇ · X :=
∑
j

〈∇EiX ,Ei 〉

where Ei is an ONB

∇ · X :=
∑
i

[
∂X i

∂ui
+
∑
j

Γi
ijX

j

]

The Laplacian
of f : S → R

∆f := ∇ ·
(
∇f
)

∆f :=
∑
ij

g ij

[
∂2f

∂ui∂uj
+ Γk

ij
∂f

∂uk

]

Note: We have an integration by parts formula:

ˆ
S
f ∇ · X dA = −

ˆ
S
〈∇f ,X 〉 dA +

ˆ
∂S

f 〈X ,~n∂S〉 d`


