
CS 468 (Spring 2013) — Discrete Differential Geometry

Lecture 11 Supplement

1. The Flow of a Vector Field

Let V be a smooth vector field on R3, so that V (x) ∈ TxR3 for every x ∈ R3. In other words, each
x ∈ R3 has a vector V (x) attached to it. A streamline of V is a curve γ : I → R3 whose tangent
vector coincides with Y everywhere. More precisely, the streamline through a given x satisfies the
equation

dγ

dt
= V (γ(t)) with γ(0) = x . (1)

If we write γ(t) := (x1(t), x2(t), x3(t)) as well as V (x) := [V 1(x), V 2(x), V 3(x)]> and x := (x1, x2, x3)
then we can see that the above equation is in fact a system of three first-order ODEs for x1(t),
x2(t), x3(t). That is,

dxi

dt
= V i(x) for i = 1, 2, 3 with x(0) = x

By the Existence and Uniqueness Theorem for ODEs, there always exists a unique solution of these
equations on a uniform time interval I under mild regularity conditions on V .

We can now define the flow of the vector field V . This is the one-parameter family of diffeomor-
phism Φt : R3 → R3 where t ∈ I defined as follows. Given x ∈ R3, then Φt(x) is equal to the point
in R3 obtained by moving forward t units of time along the streamline through x. Symbolically,

Φt(x) := γ(t) where γ solves (??).

Remark: The above concepts extend in the following way to surfaces. The definition of steamline
is unchanged. The equation satisfied by a streamline still looks like (??) but it must its solvability
must be analyzed in a parameter domain, where it becomes a system of two first-order ODE
in the parameters. You can prove that the solution varies in a compatible manner when the
parametrization is changed. The definition of flow is unchanged.

2. Lie Differentiation

Given a vector field Y on R3 along with another vector field V and its flow Φt, we can compute the
Lie derivative of Y in the direction of V . We find this by differentiating Y along the flow generated
by V . Namely, to compute the Lie derivative at x, we take the vector field Y at a point further
ahead from x along the flow of V and pull it back under the differential of the inverse flow to x.
Then we subtract the pulled-back vector from Y (x), divide by t and take the limit. Symbolically,

LV Y (x) := lim
t→0

[DΦ−t]x
(
Y ◦ Φt(x)

)
− Y (x)

t
=

d

dt
([DΦ−t]xY ◦ Φt(x))

∣∣∣∣
t=0

.

Remark: This idea extends more or less directly to surfaces.

3. The Lie Bracket

Let V and W be two vector fields on R3. We define their Lie bracket as the commutator of the
directional derivative operators associated to these vector fields. In other words, given any test
function ξ : R3 → R, we define

[V,W ]ξ := DW

(
DW (ξ)

)
−DW

(
DV (ξ)

)



where as usual, DV (ξ) evaluated at a point p means “take any curve c : I → R3 with c(0) = p
and ċ(0) = V (p), and then compute d

dtξ(c(t))
∣∣
t=0

.” So to compute [V,W ]ξ, you just perform this
operation twice, and twice more in the opposite order, and subtract the results.

Proposition 1 (Important Properties of the Lie Bracket). Let V and V2 be vector fields on R3.

1. [V,W ] is a vector field on R3. If V := [V 1, V 2, V 3]> and W := [W 1,W 2,W 3]> then [V,W ]
has components given by

[V,W ]j =
3∑
i=1

(
V i∂W

j

∂xi
−W i∂V

j

∂xi

)
j = 1, 2, 3

2. The Lie bracket and the Lie derivative are related via LVW = [V,W ].

3. Let φ : R3 → R3 be a smooth mapping. Then the differential of φ preserves Lie brackets. In
other words,

Dφx
(
[V,W ]

)
= [Dφx(V ), Dφx(W )]

4. Suppose V has flow Φt and W has flow Ψt. Then [V,W ] = 0 if and only if these flows
commute, i.e. Φs ◦Ψt = Ψt ◦ Φs for all s, t.

Discussion. The way we have defined it, the Lie bracket is a differential operator on functions. But
it is not necessarily a vector field because vector fields are a very specific type of differential operator.
A vector field, when acting as a differential operator via directional differentiation, depend linearly
on the derivative matrix of the function it acts upon. We have to verify that this is the case for the
Lie bracket — which we do by calculating the formula of (1). This formula, which is straightforward
to obtain, show the right kind of dependence on the derivatives of ξ. The formula of (2) uses the
definition of LVW as well as the equations satisfied by the flow of V . The formula of (3) can be
proved by substituting the formula for Dφx(W ) into the formula of (1). At a crucial point, the

derivation of the formula of (3) requires the identity ∂2φk

∂xi∂xj
= ∂2φk

∂xj∂xi
. Finally, we can interpret the

the flow commutator in (4) as follows. First, “move t units along the streamlines of V then s units
along the streamlines of W .” Then start again and “move s units along the streamlines of W then
t units along the streamlines of V .” You obtain the same final result if and only if [V,W ] = 0.

4. Lie Brackets on Surfaces

The results from the previous subsection carry over to the surface case more or less exactly. The for-
mula of part (1) of the proposition is valid in every parameter plane. Independence of parametriza-
tion (covariance, actually, since we’re dealing with vector fields) follows from part (3). In fact, part
(3) has two important consequences.

Corollary 2. Let S be a surface.

1. Let V,W be two tangent vector fields to S. Then [V,W ] is a tangent vector field to S as well.

2. Let φ : U → R3 be a parametrization and let Ei := ∂φ
∂ui

be the coordinate vector fields. Then
[Ei, Ej ] = 0.

Sketch of Proof. Both results follow from part (3). Our first assertion holds because we de-
fined the tangent space TpS as the image of Dφp. Our second assertion holds because Ei =
Dφp([0, . . . , 1, . . . , 0]>) and clearly the Lie bracket of any pair of constant vectors vanishes.



5. The Torsion-Free Property of the Levi-Civita Connection

The fifth property satisfied by the Levi-Civita connection of a surface S was incorrectly stated in
class. With typos corrected, the property reads:

∇VW −∇WV = [V,W ] for all vector fields V,W on S.

It is not a simple matter to get intuition for this formula. It certainly holds when we are in
Euclidean space and ∇ is replaced by D. So the fifth property above is a natural extension to
surfaces. Morally speaking, it is related to the idea the “second partial derivatives of functions
commute.” So if ξ : S → R is a function and Ei, Ej are coordinate vector fields, we have(

∇EiEj −∇EjEi
)
(ξ) = 0 .


