CS 468 (SPRING 2013) — DISCRETE DIFFERENTIAL GEOMETRY

Lecture 11 Supplement

1. The Flow of a Vector Field

Let V be a smooth vector field on R3, so that V(x) € T,R3 for every x € R3. In other words, each
x € R3 has a vector V(z) attached to it. A streamline of V is a curve vy : I — R3 whose tangent
vector coincides with Y everywhere. More precisely, the streamline through a given x satisfies the
equation
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If we write y(t) := (z!(t), 2%(t), 23(t)) as well as V (z) := [V(z), V2(z), V3(2)]" and 2 := (2!, 22, 23)
then we can see that the above equation is in fact a system of three first-order ODEs for x!(t),
22(t), 23(t). That is,
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By the Existence and Uniqueness Theorem for ODEs, there always exists a unique solution of these
equations on a uniform time interval I under mild regularity conditions on V.

We can now define the flow of the vector field V. This is the one-parameter family of diffeomor-
phism ®; : R3 — R3 where t € I defined as follows. Given x € R3, then ®,(z) is equal to the point
in R? obtained by moving forward ¢ units of time along the streamline through 2. Symbolically,

Dy () := (1) where 7 solves (77).

REMARK: The above concepts extend in the following way to surfaces. The definition of steamline
is unchanged. The equation satisfied by a streamline still looks like (??) but it must its solvability
must be analyzed in a parameter domain, where it becomes a system of two first-order ODE
in the parameters. You can prove that the solution varies in a compatible manner when the
parametrization is changed. The definition of flow is unchanged.

2. Lie Differentiation

Given a vector field Y on R? along with another vector field V and its flow ®;, we can compute the
Lie derivative of Y in the direction of V. We find this by differentiating Y along the flow generated
by V. Namely, to compute the Lie derivative at z, we take the vector field Y at a point further
ahead from x along the flow of V' and pull it back under the differential of the inverse flow to .
Then we subtract the pulled-back vector from Y (z), divide by ¢ and take the limit. Symbolically,

LyY(e) = }Eﬂ% [DD_¢].(Y o ;I)t(-fl?)) —Y(x) _ % ([DD_J,Y o ®,(z)) N

REMARK: This idea extends more or less directly to surfaces.

3. The Lie Bracket

Let V and W be two vector fields on R3. We define their Lie bracket as the commutator of the
directional derivative operators associated to these vector fields. In other words, given any test
function ¢ : R? — R, we define

[V,W]¢ := Dw (Dw (&) — Dw (Dv (€))



where as usual, Dy (£) evaluated at a point p means “take any curve ¢ : I — R? with ¢(0) = p
and ¢(0) = V(p), and then compute %ﬁ(c(t))‘tzo.” So to compute [V, W], you just perform this
operation twice, and twice more in the opposite order, and subtract the results.

Proposition 1 (Important Properties of the Lie Bracket). Let V and Va be vector fields on R3.

1. [V, W] is a vector field on R3. If V := [VL, V2 V3T and W := [WL, W2 W3] then [V, W]
has components given by
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2. The Lie bracket and the Lie derivative are related via Ly W = [V, W].

3. Let ¢ : R? — R3 be a smooth mapping. Then the differential of ¢ preserves Lie brackets. In
other words,

4. Suppose V' has flow ®; and W has flow ;. Then [V,W]| = 0 if and only if these flows
commute, i.e. ;o0 Wy = Uy 0 O for all s,t.

Discussion. The way we have defined it, the Lie bracket is a differential operator on functions. But
it is not necessarily a vector field because vector fields are a very specific type of differential operator.
A vector field, when acting as a differential operator via directional differentiation, depend linearly
on the derivative matrix of the function it acts upon. We have to verify that this is the case for the
Lie bracket — which we do by calculating the formula of (1). This formula, which is straightforward
to obtain, show the right kind of dependence on the derivatives of £. The formula of (2) uses the
definition of Ly W as well as the equations satisfied by the flow of V. The formula of (3) can be
proved by substituting the formula for D¢, (W) into the formula of (1). At a crucial point, the
derivation of the formula of (3) requires the identity 8‘233; = 8?;(5];1" Finally, we can interpret the
the flow commutator in (4) as follows. First, “move ¢ units along the streamlines of V' then s units
along the streamlines of W.” Then start again and “move s units along the streamlines of W then
t units along the streamlines of V.” You obtain the same final result if and only if [V,W]=0. O

4. Lie Brackets on Surfaces

The results from the previous subsection carry over to the surface case more or less exactly. The for-
mula of part (1) of the proposition is valid in every parameter plane. Independence of parametriza-
tion (covariance, actually, since we're dealing with vector fields) follows from part (3). In fact, part
(3) has two important consequences.

Corollary 2. Let S be a surface.
1. Let VW be two tangent vector fields to S. Then [V, W] is a tangent vector field to S as well.

2. Let ¢ : U — R? be a parametrization and let E; := gjﬁ be the coordinate vector fields. Then

Sketch of Proof. Both results follow from part (3). Our first assertion holds because we de-
fined the tangent space 7,S as the image of D¢,. Our second assertion holds because E; =
Dg,([0,...,1,... ,O]T) and clearly the Lie bracket of any pair of constant vectors vanishes. ]



5. The Torsion-Free Property of the Levi-Civita Connection

The fifth property satisfied by the Levi-Civita connection of a surface S was incorrectly stated in
class. With typos corrected, the property reads:

VyW —VwV = [V, V] for all vector fields V, W on S.

It is not a simple matter to get intuition for this formula. It certainly holds when we are in
Fuclidean space and V is replaced by D. So the fifth property above is a natural extension to
surfaces. Morally speaking, it is related to the idea the “second partial derivatives of functions
commute.” So if { : S — R is a function and E;, E; are coordinate vector fields, we have

(Vi,Ej — Vi, E) () =0.



