LECTURE 12: DISCRETE LAPLACIAN
Scribe: Tianye Lu

Our goal is to come up with a discrete version of Laplacian operator for triangulated surfaces,
so that we can use it in practice to solve related problems. We are mostly interested in the standard
Poisson problem:

Af=yg
We will first introduce some basic facts and then talk about discretization. By the end, we will

be able to derive a discretized linear system from poisson problem and calculate the numerical
solutions.

1 Facts and Tools

Laplacian Operator: A

Laplacian Operator is a linear functional on C*°(M), i.e. A: f(x) € C®(M) — Af(x) € C°(M).
If M = R", it can be explicitly expressed as a derivative operato A=->" 9° . That is to
i
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say, if we have a region 2 € R" and a function f(z) € C*°(Q), then Af(z) = —>_ % (x).
If M is a surface, which is more often the case, one standard definition of L;placian operator
is: Af =V -Vf, where V- and V are divergence and gradient operator respectively. However, this
definition is not straigtforward for discretization. Alternatively, we will avoid this problem with
Galerkin’s approach.
Before we go on, let’s briefly talk about why Laplacian operator is important. Laplacian operator
is used in many important partial differential equations, which are the keys to many mathematical

and physical models. Here are some examples:

e The heat equation % = —Awu describes the distribution of heat in a given region over time.

e The eigenfunctions of A (Recall that a matrix is a linear operator defined in a vector space
and has its eigenvectors in the space; similarly, the Laplacian operator is a linear operator
defined in a function space, and also has its eigenfunctions in the function space) are the
solutions to the equation Au = Au. If S is a surface and u € C°°(9), the eigenfunctions
describe the vibration modes of the surface S.

Galerkin’s Approach

Given a function defined on M, ie. f: M — R, its £? dual £ 7 is defined on the function space
L2(M).
Lp:L2(M)—R

Lylg] = /M fgdA, Vg € L*(M)

L2(M) is all the square integrable functions on M. More rigorously, £L2(M) = {f : M — R :
Jo 2 < oo}

The function g is often called a test function. We will only deal with the following set of test
functions in our discussion:

{9 € C*(M) : glom = 0}

Often, we are interested in a compact surface without boundary, so M = (.

'Note that the sign of Laplacian operator is inconsistent in different literature.



Note that we can also recover the function f from its dual £;. Figure[l|gives an intuition about
this process. We can take g to be the square function and as g approaches a single point when it
gets narrow, L[g] approaches the value of f at that particular point.

Figure 1: L; — f

We apply £? dual to Laplacian using the test functions stated above (note that the test functions
vanish on the boundary), and use integration by parts:

Lislg] = [y 9AfdA
= boundary terms — [,,Vg-VfdA
= — [y Vg-VfdA

Notice that we have used Laplacian without actually evaluating it. This is an example of
Galerkin’s approach, which is a class of methods for converting a continuous operator problem to
a discrete problem (e.g. for discretizing and solving differential equations). In this approach we
need to decide on a function space (where function f come from) and a test function space (where
function g come from; we can often apply boundary conditions by choosing test functions). We’ll
see this method in practice in the next section.

2 Discretization

In this section, we will first pose a different representation of the Poisson problem and then use the
tools from the previous section to derive a discretization.

Weak Solution

Consider Poisson Equation Af = g. As stated before, it is hard to directly derive a good dis-
cretization for the equation. Therefore, we seek a different representation with the concept of weak
solution. The weak solutions for the Poisson Equation are functions f that satisfy the following set
of equationsﬂ

/ PAfdA :/ ¢gdA,Y test functions ¢
M M

Recall that according to Galerkin’s method, we need to choose the basis function for f, g and
test function ¢.

First Order Finite Element

Since we are focusing on the Poisson Equation on a surface M, f and g should be functions defined
on the surface. Therefore we need a set of basis function on M. For triangulated surface, the most
natural choice of basis functions are the piecewise linear hat functions h;, which equal one at their
associated vertex and zero at all other vertices, as shown in Figure 2.

2The notation here is different from the last section. Specifically, Af and g are functions we want to discretize
and ¢ is test function.
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Figure 2: One hat function per vertex

Therefore, if we know the value of f(x) on each vertex, f(v;) = a;, we can approximate it with:
f@) =) ahi(x)
i
Since hi(z) are all fixed, we can store f with only a single array @ € RV, Similarly, we can have
g(x) = > bihi(z).
7

With the discretization of f and g, using h; as test functions, recall the £2 dual of Af and the
equations for weak solutions of Poisson Equation, we can now pose the original Poisson problem as
a set of |V| equations:

/ hlAfdA:/ h;gdA,Yi € {1,2,,|V|}
M M
For the left hand side:

[o hiAfdA — [y Vhi - VfdA
- fM th . V(Z CLjhj)dA

J
- Zaj fM Vhl . Vh]dA
J

Suppose matrix L = {L;; }v|x|v|> Lij Sy Vhi - VhjdA. Then the left hand side of the set of

| > Luja;
hAfdA ;
M
S Loja;
equations is: Jar h2AfdA = J o =La
Jar v AfdA > Ly
j
For the right hand side:
fM higdA =

Jar bi - (XS bjhj)dA
J

by [y hi - hydA

7

Similarly, suppose matrix A = {A;;}jv|x|v|, Aij = Jas hi - hjdA. The right hand side of the set
of equations is Ab.

Now we derive a linear problem La = Ag, we only need to calculate the matrices L and A in
order to solve a.

Cotan Laplacian

We now try to calculate the matrix L by examining its element L;; = f v Vhi - Vh;dA. Since h;
are piecewise linear functions on a triangular face, Vh; is a constant vector on a face, and thus



Vh; - Vh;j yields one scaler per face. Therefore, to calculate the integral above, for each face we
multiply the scalar Vh; - Vh; on that face by the area of the face and then sum the results.

Let’s first evaluate the gradient. Now consider a linear function f defined on a triangle so
that f(v1) =1, f(v2) = f(v3) = 0, as shown in Figure For a linear function, we have f(z) =
f(zo) + V |z - (x — 20). Let g = v1, © = v9 and vs respectively, and notice that V f lies within
the triangle face, we get:

Vf-(v1—wv3) = 1
Vf'(’l)l—vg) =1
Vf-n =

This yields: Vf - (v2 —v3) = 0. Therefore, Vf is perpendicular to the edge vavs, as shown in
Figure
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Figure 3

Now we know the direction of the gradient, we will go on to evaluate its magnitude.

1 V- (v1—vs)

= [IVf|l3cos(5 — 03)
HVleg sin03
IVl = 113%93

h

where h is the height of the triangle corresponding to edge vavs. Recall that triangle area A =

|vgvs| - h, thus
1

)
vf_QA

€2L3 is the vector from v9 to vg rotated by a quarter turn in the counter-clockwise direction.

Now we have the gradient vectors on a face, we need to take dot products of them to get the
scalar associated with each face. There are two different cases. Let’s still look at a single triangle
face and functions defined on it for now. The first case is when two functions are defined on the
same vertex.



Jo(VEVHAT = AIVSIP = £ =
(hcot athcot §)

1 2h
= 5(cota + cot 3)

The second case is when two functions are defined on different vertices (but of the same edge).

_ _ 1 1 1L\ _ —lilocosf

fT<vfaava>dT - A<vfavvfﬁ> - H<6317612> - T 44
—(h/sin B)(h/sin «) cos O
- 2bh

—hcosf
2(h cot a+h cot B) sin asin 8

—cosf
2(cos asin S+cos 3 sin o)

—cos 6 —cosf

2sin(a+fB)  2sinf
—% cot 6

Now we can apply these results on hat functions {h;} by simply summing around each vertex.
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(b) Case 2: Different vertices
(a) Case 1: Same vertex

Figure 4: Summing around each vertex

1
(Vhy, Vhy,) = B Z(cot a; + cot 3;)

1
(Vhy,Vhy) = —§(cot 61 + cot 63)

Finally, we get the cotangent Laplacian matrix L:
3 > (cotaj + cot B;), ifi=j.
i~j
—%(cotaj+cotﬁj), ifi ~ j. (1)

0, otherwise

Lij =

i ~ 7 means that vertex ¢ and vertex j are adjacent.

Mass Matrix

For the right hand side, we need to calculate the matrix A, which is often called the mass matriz.

As it involved the product of h; and h;, the result would be quadratic. There are several approaches

to deal with it. A straightforward and consistent approach is to just do the quadratic integral.
Similarly to the approach to calculate L, we fist integrate on a single triangle.

friangle _ area/6 ifi=j @)
& area/12 ifi#j

Then we can sum up around each vertex. There are two cases as shown in Figure [4]

one—ring area ¢+ -

P R e ifi=j 3)
2 adjacent area e .
e
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Some properties of the mass matrix constructed this way: each row sums to one third of the
one-ring area of the vertex corresponding to that row; to construct the mass matrix it involves
only vertex and its neighbors; it partitions surface area as the weight to assign to each vertex. The

matrix can be used for calculating integration (notice that > h; = 1):
i

Juf = fM%:ajhj
= Sy 2 aihi (32 hi)
= ZAjijaj Z
_ TTag

Setting @ = 1 will give us the surface area.

However, there is one drawback of this approach. The mass matrix constructed is not diagonal
which means it is often hard to manipulate it. We can turn it into a diagonal matrix by introducing
certain approximations.

From the previous example, we have seen that the mass matrix is actually integrating a function
on the surface. Therefore, we can try to find different ways to do the integration. For example, the
lumped mass matriz finds the dual cells of each vertex and approximate the diagonal of A with the
areas of each cell:

a;; = Area(cell i)

Figure 5: Lumped Mass Matrix with dual cells

Such approximation won’t make a difference for smooth functions. Intuitively, the function
values of adjacent vertices are very close for a smooth functions, so the result won’t change a lot
if we add them all to the diagonal. Meanwhile, as the mesh gets more and more refined, we can
argue that the result would converge.

Figure 6: Barycentric Lumped Mass Matrix

There are many ways to choose the dual cell. One simple solution is the barycentric lumped
mass matriz. We assign the dual of each face to be the barycentric of the triangle. Therefore, each
vertex has a third of its one-ring area assigned to it. The resulting cells are likely to be of irregular
shapes. One alternative approach is to take Voronoi Cells and use the areas accordingly.
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