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Lecture 13 — Tensors and Exterior Calculus
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Hodge Theorem



Inner Product Spaces

Let V be a vector space of dimension n.

Def: An inner product on V is a bilinear, symmetric, positive
definite function (-,-) : V x V — R.

We have all the familiar constructions:
e The norm of a vector is ||v| := \/(v, V).

e Vectors v, w are orthogonal if (v,w) = 0.

e If S is a subspace of V then every vector v € V can be uniquely
decomposed as v := vll + v+ where vl € S and vt L S.

e The mapping v — vl is the orthogonal projection onto S.



Dual Vectors

Def: Let V be vector space. The dual space is

V*i={£:V — R: s linear}

Proposition: V* is a vector space of dimension n.

Proof: If {E;} is a basis for V then {w'} is a basis for V* where

(E) = {1 i=s

0 otherwise



The Dual Space of an Inner Product Space

Let V be vector space with inner product (-,-). The following
additional constructions are available to us.

o If v €V then v’ € V* where v’ (w) := (v, w) Vw € V.
o If £ € V* then 3¢F €V so that &(w) = (€%, w) Yw € V.
o These are inverse operations: (v*)f = v and (¢f)” = ¢.

o V* carries the inner product (&, )y := (€8, (P VE, ¢ € V*



Basis Representations
Let {E;} denote a basis for V and put gj; := (E;, Ej).

Def: Let g/ be the components of the inverse of the matrix [gj].

Then:
e The dual basis is w' := > gE;.

o If v =3, V/E; then v = 3, viw' where v; := DOF giv.
o I €=, finf then £ = Y, FIE; where £/ := 37, gl

o If ¢ =3 aw and ( =Y, biw' then (£, () = > glajb;

Note: If {E;} is orthonormal then g;; = 6;; and v; = v/ and &' = ¢;.



Tensors

Let V be a vector space of dimension n.
Tensors are “multilinear functions on ¥ with multi-vector output.”

Def: The space of k-covariant and /-contravariant tensors is

k times £ times k times £ times
P P —N —
VR @VVR---@V =L f: VXXV Vx---xV

such that f is multilinear

Basic facts:
e Vector space of dimension n*¢. Basis in terms of E;'s and w'’s.
e Inherits an inner product from V and has £ and b operators.

e There are contractions (killing a V factor with a V* factor).



Symmetric Bilinear Tensors

A symmetric (2,0)-tensor is an element A € V* ® V* such that
A(v,w) = A(w,v) for all v,w € V.

Example:

A = 2" FF and
S = shape operator.

Some properties:

* In a basis we have A=} Ajw' @ w with A; = Aj;.

We define an associated self-adjoint (1,1)-tensor S € V* @V
with the formula A(v, w) := (5(v), w).

In a basis we have S = 3~ Slw' @ Ej where S! =7, g9 Aj.

If v=>";viE and w =Y, w'E; then (v,w) = [v]T[g][w] and
Av,w)=[IT[Allw] - and S =[g] YA

The contraction of A equals the trace of S equals Z,-jg"jA,-j



Alternating Tensors

A k-form is an element 0 € V* ® - - - ® V* such that for all v,w € V
and pairs of slots in o we have

O’(. VoW ) = —J(. LWLl vL ) “Alternating (k,0)-tensor”

Fact: If dimV = 2 then only k = 0, 1,2 are non-trivial.
Alt°(V) =R and Alt'(V)=V* and AI?(V)=R

/I\
. . . . 1 2
Duality: if V has an inner product Basis: The element w Aw™
Let v=> ;v Ejand w =Y, w'E;.
e The area form dA € Alt2(V) Then we define it via
wh A w?(v, w) := det([v w])

L Signed area of
dA(V> W) " | parallelogon v A W]

e The Hodge-star operator *

*xdA=1  and if w € Alt}(V) then
WA*T = (W, T)dA < *1=dA #w(v) = w(Ry ja(v))




Tensor Bundles on a Surface
Let S be a surface and let V, := T,S.

Def: The bundle of (k,¢)-tensors over S attached the vector space
VD =Vr@. @ Vi@V, @V, ateach pe S.

Def: A section of this bundle is the assignment p — o, € V,(,k’e).

Examples:
e k = /¢ =0 — sections are functions on S
e k=0,¢{ =1 — sections are vector fields on S

e k=1 /=0 — sections are one-forms on S

k =2,¢ = 0 and symmetric — sections are a symmetric
bilinear form at each point. E.g. the metric and the 2"? FF.

k = 2,¢ =0 and antisymmetric — sections are two-forms on S.
E.g. the area form.



Covariant Differentiation in a Tensor Bundle

The covariant derivative extends naturally to tensor bundles.

A formula: Choose a basis and suppose

o= Zagfw’@wf@ Ec® E
ijkl
is a tensor. Then

Vo —ZVSU [ ®w ® Ex @ Ef] ® ws
ijkls

is also a tensor, where

do ke
ke ._ ij t k¢ t tl ? _kt
Vsa,-j = s T Mo 5 — r a,t +r 0 —I—rtsau



Exterior Differentiation

Def: The exterior derivative is the operator d : Alt"(S) — Alt*T1(S)
defined as follows.

e Choose a basis.

o If f € Alt°(S) we define df geometrically by df(V) := V/(f) or

.
df = Z gxiw’ Thus (df)! = VFf

o If w=>"aw € Alt}(S) then dw = (g—j; — g—fﬁ)wl A w?

o If w=aw! Aw? € Alt°(S) then dw = 0.

Basic Facts:
e ddw = 0 for all w € Alt*(S) and all k.
¢ dw = Antisym(Vw).



The Co-differential Operator

Def: The co-differential is the L?-adjoint of d. It is therefore an
operator § : Alt*T1(S) — Alt%(S) that satisfies

/5<dw,7> dA = /5<w,57> dA

It is given by § := — * d .

Interpretations:
o If f is a function, then (df)? = Vf.
o If X is a vector field, then 6X* = div(X).
e If X is a vector field, then dX* = curl(X) dA.
o If f is a function, then (5(f dA))” = R /»(Vf).



Stokes' Theorem

Intuition: Generalization of the Fundamental Theorem of Calculus.

Suppose that ¢ be a (k + 1)-dimensional submanifold of S with
k-dimensional boundary dc. Let w be a k-form on S. Then:

/dw:/w
c dc

Interpretations:

e The divergence theorem:

/Sdiv(X)dA:/ (Nos, X) de

oS
o FEtc.



The Hodge Theorem
Theorem: Alt'(S) = dAIt’(S) @ SAIt3(S) @ H! where H1 is the

set of harmonic one-forms:

heH! & dh=0and 6h=0
& (dd +dd)h =0

—_——
“Hodge Laplacian”

Corollary: Every vector field X on S can be decomposed into a
“gradient” part, a “divergence-free” part, and a “harmonic part.”

X =Vo¢+ curl (V) + b with h € 1!

Another deep mathematical result:

Theorem: dim(#!) = 2x(S). This is a toplogical invariant.



