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Lecture 13 — Tensors and Exterior Calculus



Outline

• Linear and multilinear algebra with an inner product

• Tensor bundles over a surface

• Symmetric and alternating tensors

• Exterior calculus

• Stokes’ Theorem

• Hodge Theorem



Inner Product Spaces

Let V be a vector space of dimension n.

Def: An inner product on V is a bilinear, symmetric, positive
definite function 〈·, ·〉 : V × V → R.

We have all the familiar constructions:

• The norm of a vector is ‖v‖ :=
√
〈v , v〉.

• Vectors v ,w are orthogonal if 〈v ,w〉 = 0.

• If S is a subspace of V then every vector v ∈ V can be uniquely
decomposed as v := v‖ + v⊥ where v‖ ∈ S and v⊥ ⊥ S.

• The mapping v 7→ v‖ is the orthogonal projection onto S.



Dual Vectors

Def: Let V be vector space. The dual space is

V∗ := {ξ : V → R : ξ is linear}

Proposition: V∗ is a vector space of dimension n.

Proof: If {Ei} is a basis for V then {ωi} is a basis for V∗ where

ωi (Es) =

{
1 i = s

0 otherwise



The Dual Space of an Inner Product Space

Let V be vector space with inner product 〈·, ·〉. The following
additional constructions are available to us.

• If v ∈ V then v [ ∈ V∗ where v [(w) := 〈v ,w〉 ∀w ∈ V.

• If ξ ∈ V∗ then ∃ ξ] ∈ V so that ξ(w) = 〈ξ],w〉 ∀w ∈ V.

• These are inverse operations: (v [)] = v and (ξ])[ = ξ.

• V∗ carries the inner product 〈ξ, ζ〉V∗ := 〈ξ], ζ]〉 ∀ ξ, ζ ∈ V∗



Basis Representations

Let {Ei} denote a basis for V and put gij := 〈Ei ,Ej〉.

Def: Let g ij be the components of the inverse of the matrix [gij ].

Then:

• The dual basis is ωi :=
∑

j g
ijEj .

• If v =
∑

i v
iEi then v [ =

∑
i viω

i where vi :=
∑

j gijv
j .

• If ξ =
∑

i fiη
i then f ] =

∑
i f

iEi where f i :=
∑

j g
ij fj .

• If ξ =
∑

i aiω
i and ζ =

∑
i biω

i then 〈ξ, ζ〉 =
∑

ij g
ijaibj

Note: If {Ei} is orthonormal then gij = δij and vi = v i and ξi = ξi .



Tensors

Let V be a vector space of dimension n.

Tensors are “multilinear functions on V with multi-vector output.”

Def: The space of k-covariant and `-contravariant tensors is

V∗
k times︷ ︸︸ ︷
⊗ · · ·⊗V∗ ⊗ V

` times︷ ︸︸ ︷
⊗ · · ·⊗V :=

 f : V
k times︷ ︸︸ ︷
× · · ·×V → V

` times︷ ︸︸ ︷
× · · ·×V

such that f is multilinear


Basic facts:

• Vector space of dimension nk+`. Basis in terms of Ei ’s and ωi ’s.

• Inherits an inner product from V and has ] and [ operators.

• There are contractions (killing a V factor with a V∗ factor).



Symmetric Bilinear Tensors

A symmetric (2,0)-tensor is an element A ∈ V∗ ⊗ V∗ such that
A(v ,w) = A(w , v) for all v ,w ∈ V.

Some properties:

• In a basis we have A =
∑

ij Aij ω
i ⊗ ωj with Aij = Aji .

• We define an associated self-adjoint (1,1)-tensor S ∈ V∗ ⊗ V
with the formula A(v ,w) := 〈S(v),w〉.

• In a basis we have S =
∑

ij S
j
i ω

i ⊗ Ej where S j
i =

∑
k g

kjAik .

• If v =
∑

i v
iEi and w =

∑
i w

iEi then 〈v ,w〉 = [v ]>[g ][w ] and

A(v ,w) = [v ]>[A][w ] and S = [g ]−1[A]

• The contraction of A equals the trace of S equals
∑

ij g
ijAij

Example:

A = 2nd FF and
S = shape operator.



Alternating Tensors

A k-form is an element σ ∈ V∗ ⊗ · · · ⊗ V∗ such that for all v ,w ∈ V
and pairs of slots in σ we have

σ(. . . v . . .w . . .) = −σ(. . .w . . . v . . .) “Alternating (k, 0)-tensor”

Fact: If dimV = 2 then only k = 0, 1, 2 are non-trivial.

Alt0(V) = R and Alt1(V) = V∗ and Alt2(V) ∼= R

Duality: if V has an inner product

• The area form dA ∈ Alt2(V)

dA(v ,w) :=
[

Signed area of
parallelogon v ∧w

]
• The Hodge-star operator ∗

ω ∧ ∗τ := 〈ω, τ〉 dA

↑
Basis: The element ω1 ∧ ω2

Let v =
∑

i v
iEi and w =

∑
i w

iEi .
Then we define it via

ω1 ∧ ω2(v ,w) := det([v w ])

←
∗dA = 1

∗1 = dA

and if ω ∈ Alt1(V) then

∗ω(v) = ω(Rπ/2(v))



Tensor Bundles on a Surface

Let S be a surface and let Vp := TpS .

Def: The bundle of (k, `)-tensors over S attached the vector space

V(k,`)
p := V∗p ⊗ · · · ⊗ V∗p ⊗ Vp ⊗ · · · ⊗ Vp at each p ∈ S .

Def: A section of this bundle is the assignment p 7→ σp ∈ V(k,`)
p .

Examples:

• k = ` = 0 — sections are functions on S

• k = 0, ` = 1 — sections are vector fields on S

• k = 1, ` = 0 — sections are one-forms on S

• k = 2, ` = 0 and symmetric — sections are a symmetric
bilinear form at each point. E.g. the metric and the 2nd FF.

• k = 2, ` = 0 and antisymmetric — sections are two-forms on S .
E.g. the area form.



Covariant Differentiation in a Tensor Bundle

The covariant derivative extends naturally to tensor bundles.

A formula: Choose a basis and suppose

σ :=
∑
ijkl

σk`ij ω
i ⊗ ωj ⊗ Ek ⊗ E`

is a tensor. Then

∇σ :=
∑
ijkls

∇sσ
k`
ij [ωi ⊗ ωj ⊗ Ek ⊗ E`]⊗ ωs

is also a tensor, where

∇sσ
k`
ij :=

∂σk`ij
∂x s

− Γt
isσ

k`
tj − Γt

jsσ
k`
it + Γi

tsσ
t`
ij + Γ`tsσ

kt
ij



Exterior Differentiation

Def: The exterior derivative is the operator d : Altk(S)→ Altk+1(S)
defined as follows.

• Choose a basis.

• If f ∈ Alt0(S) we define df geometrically by df (V ) := V (f ) or

df =
∑
i

∂f

∂x i
ωi

Thus (df )] = ∇f

• If ω =
∑

i aiω
i ∈ Alt1(S) then dω =

(
∂a1

∂x2 − ∂a2

∂x1

)
ω1 ∧ ω2

• If ω = aω1 ∧ ω2 ∈ Alt0(S) then dω = 0.

Basic Facts:

• ddω = 0 for all ω ∈ Altk(S) and all k .

• dω = Antisym(∇ω).



The Co-differential Operator

Def: The co-differential is the L2-adjoint of d . It is therefore an
operator δ : Altk+1(S)→ Altk(S) that satisfies

ˆ
S
〈dω, τ〉 dA =

ˆ
S
〈ω, δτ〉 dA

It is given by δ := − ∗ d ∗.

Interpretations:

• If f is a function, then (df )] = ∇f .

• If X is a vector field, then δX [ = div(X ).

• If X is a vector field, then dX [ = curl(X ) dA.

• If f is a function, then
(
δ(f dA)

)[
= Rπ/2

(
∇f
)
.



Stokes’ Theorem

Intuition: Generalization of the Fundamental Theorem of Calculus.

Suppose that c be a (k + 1)-dimensional submanifold of S with
k-dimensional boundary ∂c. Let ω be a k-form on S . Then:

ˆ
c
dω =

ˆ
∂c
ω

Interpretations:

• The divergence theorem:ˆ
S
div(X )dA =

ˆ
∂S
〈N∂S ,X 〉 d`

• Etc.



The Hodge Theorem

Theorem: Alt1(S) = dAlt0(S)⊕ δAlt2(S)⊕H1 where H1 is the
set of harmonic one-forms:

h ∈ H1 ⇔ dh = 0 and δh = 0

⇔ (dδ + δd)︸ ︷︷ ︸
“Hodge Laplacian”

h = 0

Corollary: Every vector field X on S can be decomposed into a
“gradient” part, a “divergence-free” part, and a “harmonic part.”

X = ∇φ+ curl
(
∇ψ
)

+ h] with h ∈ H1

Another deep mathematical result:

Theorem: dim(H1) = 2χ(S). This is a toplogical invariant.


