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1 Math Review

Before we dive into Discrete Exterior Calculus, let’s review the topics from last lecture, with a focus
on the methods that will be useful to us when operating on a triangle mesh. We will also try to
develop more intuition behind tensors and the various operators discussed in the previous lecture.

1.1 Vector Calculus

The main objects we deal with in vector calculus are scalar functions and vector functions. A scalar
function maps every point in space to a number, while a vector function maps every point in space
to a vector. We have a few other essential objects and operators that will be integral to our study
of exterior calculus:

Gradient: The gradient of a scalar function f is a vector field that represents the direction
and magnitude of the greatest rate of increase of the function at each point:

∇f ≡
∑
i

∂f

∂xi
x̂i

Divergence: The divergence of a vector field ~v is a scalar function that represents a measure of
how the vector field is spreading out at each point, or alternatively, a measure of the field’s tendency
to converge toward (sink) or repel from (source) a point:

div~v ≡ ∇ · ~v ≡
∑
i

∂vi
∂xi

Curl: The curl of a vector field ~v is a vector function that represents a measure of how the vector
field is circulating at each point:

curl~v ≡ ∇× ~v =
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(shown in 3-space for simplicity)

Laplacian: Combining previous operators, we can take the divergence of the gradient of a function
f to get the Laplacian:

∆f ≡ ∇ · ∇f ≡
∑
i

∂2f

∂x2
i

The Laplacian of a f at a specific point p is roughly a measure of the rate at which the average
value of f , over spheres centered at p, deviates from f(p) as the sphere’s radius increases (courtesy
of Wikipedia). Not the most intuitive sentence, but the Laplacian is very useful in many practical
applications and hopefully intuition will strike when we get there.



Let’s also recall a couple of useful theorems from vector calculus (in R2):

Divergence Theorem: Suppose we have some domain Ω, a vector field with ~v defined at each
point in Ω, and a normal vector ~n defined at each point along the boundary ∂Ω of our domain.
The Divergence Theorem informally says that the total amount of ”spreading-out” in the vector
field is equal to the total amount that is leaving the boundary of the domain (see Fig. 1). More
formally: ˆ

Ω
div~v dA =

ˆ
∂Ω
~v · ~n dl

Green’s Theorem: Suppose we have some domain Ω, a vector field with ~v defined at each point
in Ω, and a tangent vector ~t defined at each point along the boundary ∂Ω of our domain. Green’s
Theorem says something similar, but orthogonal, to the Divergence Theorem. Informally, it says
that the total amount of circulation in the vector field is equal to the total amount that is circulating
around the boundary of the domain (see Fig. 1). More formally

ˆ
Ω
curl~v dA =

ˆ
∂Ω
~v · ~t dl

1.2 Exterior Calculus

We’d like to extend these various formalizations from vector calculus to surfaces (and manifolds).
Up until now, we’ve been discussing abstract vector fields on some domain, with no constraints.
Now, to consider our vector calculus machinery working on surfaces (and manifolds), we require
the vector fields to be intrinsic, i.e. they are tangent to the surface at every point.

Differential Forms: One object that will be very useful to us from the study of tensors is
something called a differential k-form. For each point p on a surface S, a differential k-form takes
as input k vectors v1, · · · , vk where vi ∈ TpS, and outputs a real number. These k-forms have
two important properties – they are multi-linear, or more specifically k-linear, and alternating or
antisymmetric.

Example: Suppose we have a differential 2-form ωp(v1, v2). The form is bilinear which means
that ωp(c1v1 + c2v2, v3) = c1ωp(v1, v3) + c2ωp(v2, v3). The form is antisymmetric which means that
ω(v1, v2) = −ω(v2, v1).

(a) Divergence Theorem (b) Green’s Theorem (c) Stokes’ Theorem

Figure 1: Theorems visualized



Super Simple Example: A function f on a surface S is just a differential 0-form. It takes zero
vector inputs, and outputs a real number, i.e. f : S → R. This is a trivial example, but still a
very important one. We’ve learned many tools for differentiating functions on surfaces, and now
the same tools will extend to differentiating forms and vector fields on surfaces.

One More Example: A differential 1-form takes as input a single vector x and outputs a real
number. Suppose we have a surface S and some vector field ~vp : S → TpS, which assigns a
vector to each point p on the surface. Associated with this vector field is a differential 1-form
ωp(x) = 〈vp, x〉 that takes a vector v at each point and outputs a real number, which is the inner
product of the input vector against the vector field element at p. Finally, the association between
these two objects ~vp and ωp is handled by the sharp and flat operators from last lecture:

(~vp)
[ = ωp and (ωp)

] = ~vp

As a side-note, and a reminder of what the flat and sharp operators actually are, let’s look at some
intuition behind their nomenclature. Recall that upper and lower indices are important to us to
differentiate between vector space indices (lower) and dual space indices (upper). In music, when
we sharp a note we raise it by a half step; in differential geometry, when we sharp an element of a
dual space we raise an index and get an element of the vector space! In music, when we flat a note
we lower it by a half step; in differential geometry, when we flat an element of a vector space we
lower an index and get an element of the dual space!

ωi =
∑
j

gijvj and vi =
∑
j

gijω
j

Integration of k-forms: We can integrate a k-form on a k-dimensional object – 1-forms on
curves, 2-forms on surfaces, etc. Let’s say we have a 1-form ω with an associated vector field ~v (i.e.
ω] = ~v), and we want to integrate ω along a curve γ that lies on a surface S, where γ : [0, 1]→ S.
Remember that we are concerned with vector fields that lie in the tangent space of our surface, so
ω will be operating on the tangent vector γ′:

ˆ
γ
ω =

1ˆ

0

ω(γ′) dt =

1ˆ

0

(~v · γ′) dt

What this integral tells us is the amount of our 1-form ω that is parallel to the curve γ. These
integrals will be very useful when we start operating on a triangle mesh in discrete land.

Stokes’ Theorem: One more piece of math review! Encapsulating nearly all these ideas and
theorems we’ve seen so far, we have Stokes’ Theorem. Suppose we have some domain Ω, and a
form ω on that domain: ˆ

Ω
dω =

ˆ
∂Ω
ω

The intuition behind this theorem is very similar to the Divergence Theorem and Green’s Theorem
(see Fig. 1). One important note is that if Ω is a (k + 1)-dimensional space, then ω should be a
k-form. That way, on the LHS we are integrating a (k+1)-form dω on a (k+1)-dimensional object
Ω, and on the RHS we are integrating a k-form ω on a k-dimensional object ∂Ω, the boundary of
Ω.



2 Discrete Exterior Calculus (DEC)

We have a notion of discrete vs. discretized differential geometry. We consider a discrete version to
be an application of a continuous concept to a discrete surface (a triangle mesh), where we make no
approximations, but instead exactly model the continuous version. Whereas, a discretized version
uses some approximations to reach a good enough estimate of some continuous concept. Here, we
get to use the word discrete and not discretized (not entirely, as we’ll see, but mostly). Let’s first
revisit a couple of useful concepts before continuing.

Oriented Simplicial Complex: A k-complex is a topological space constructed by essentially
“gluing together” simplices (points, lines, triangles, etc). We’re most interested in simplicial 2-
complexes, a.k.a. triangle meshes. And more importantly, we care that they are oriented. What
this means is we have a continuous normal field on the surface, but this isn’t quite intuitive on a dis-
crete surface. Instead we have to define a consistent direction for the normal vector at every point
(inward vs. outward, or upward vs. downward, however you’d like to think of it), and another way
to think of this is that every triangle must be specified in either a clockwise or counter-clockwise
direction. Additionally, we’ll be assigning an orientation to each edge, but this is for our benefit
and not a requirement to consider the mesh oriented.

Dual Complex: If we have an n-complex, the dual complex is constructed by essentially tak-
ing each k-simplex and replacing it with it’s (n − k)-simplex counterpart. For example, on a
triangle mesh (n=2), each vertex (0-simplex) is transformed into a dual face (2-simplex), each edge
(1-simplex) is transformed into a dual edge (1-simplex), and each face (2-simplex) is transformed
into a dual vertex (0-simplex), and we get the dual mesh (see Fig. 2). We’ll see later that this is
where our discrete-ness becomes discretized, and we are forced to make some decisions and approxi-
mations in constructing the dual mesh. At this point, we just have topological rules for constructing
the dual complex and, for example, no rule for where the dual vertices are located.

2.1 Differential Geometry on a Discrete Surface

Now we’d like to apply all our differential geometry techniques to a triangle mesh, but there’s a
problem here. How can we apply differential techniques that favor words like smooth, infinitesimal,
etc, to a discrete surface that has a clear, fixed resolution (as long as we’re not considering infinitely
subdividing our mesh)?

Figure 2: The dual complex (blue) on a triangle mesh (green).



The Trick: Recall from earlier that we have method for integrating these differential objects
called k-forms on a k-dimensional object. This leads us to a very clean trick – instead of storing
forms at discrete locations (vertices, edges, etc) on a mesh, we’ll store integrals of those forms.
Let’s look at each case for a triangle mesh:

(1) Discrete 0-form: We’ll store the integral of 0-forms on 0-simplices, i.e. the mesh vertices.
A 0-form is just a function, and accordingly integrating over a vertex v simply gives the value of
that function at the vertex: ˆ

v
ω = f(v)→ R|V | (V = # of vertices)

(2) Discrete 1-form: Integrals of 1-forms will be stored on 1-simplices, i.e. the mesh edges. This
is where choosing an edge orientation comes in to play. If we’re integrating along an edge e in the
opposite direction that it points, we can simply negate the integral:

ˆ
e
ω → R|E| (E = # of edges)

(3) Discrete 2-form: Integrals of 2-forms will be stored on 2-simplices, i.e. the mesh faces. So, we’ll
store one value per face that represents the integral of our 2-form along that face:

ˆ
f
ω → R|F | (F = # of faces)

2.2 Exterior Derivative

Now we can apply our new technique of integrating k-forms to calculate some of the differential
quantities we’ve looked at in continuous land. Here, Stokes’ Theorem is the key to the simplicity –
the integral of the differential of a form on some domain is equal to the integral of the form along
just the domain’s boundary. We can apply this to calculate the exterior derivate of our k-forms (or
at least, the integral of the exterior derivative, since we’re storing integrated quantities).

0-form Example: Suppose we have a 0-form ω on our mesh and we want to determine its
exterior derivative dω. Since ω is a 0-form, we know dω is a 1-form, so we can integrate dω along
a 1-dimensional object, i.e. an edge in our mesh! Applying Stokes’ Theorem gives us an integral
over the boundary of the edge, and we know the boundary of an edge is simply its two vertices v1

and v2, where the edge points from v1 to v2:
ˆ
e
dω =

ˆ
∂e
ω = ωv2 − ωv1 , d ∈ R|E|×|V |

1-form Example: If we want to determine the exterior derivative dω of a 1-form ω on our mesh,
the process is very similar. We know dω is a 2-form and can therefore be integrated along a 2-
dimensional object such as a face in our mesh. Stokes’ Theorem again gives us an integral over the
boundary of the triangle face, which is simply its three edges e1, e2, and e3. One nuance is that
edges have a direction that may or may not comply with the triangle face’s orientation. To account
for this, we simply negate the value ωei stored in an edge ei if it opposes the triangle’s orientation.

ˆ
f
dω =

ˆ
∂f
ω = ωe1 + ωe2 + ωe3 , d ∈ R|F |×|E|



Figure 3: The Hodge star operator. Left: Star takes a 0-form on a vertex in the primal mesh to its
corresponding 2-form on a face in the dual mesh. Center: Star takes a 1-form on an edge in the
primal mesh to its corresponding 1-form on an edge in the dual mesh. Right: Star takes a 2-form
on a triangle in the primal mesh to its corresponding 0-form on a vertex in the dual mesh.

2.3 Hodge Star

The idea behind the Hodge star operator is that it takes a k-form and returns a dual (n− k)-form.
As we discussed earlier regarding the dual complex of a simplicial complex, this doesn’t give us
any indication of where these dual forms actually live spatially, and what value should be stored
there. For example, if we apply the star operator on a 2-form stored on a triangle face, we get a
0-form back that should be stored on a vertex of the dual complex (see Fig. 3). Where should the
dual vertex be located? This is where we’ll introduce approximations, especially when going from
a primal vertex to a dual face.

Primal 2-form to Dual 0-form: This is the simplest case of the star operator. When going
from primal faces to dual vertices, the most sensible way to convert the integrated 2-form value
over a face is to simply divide by the area of the face. Therefore, our Hodge star matrix to convert
from 2-forms to 0-forms is nothing more than a diagonal matrix of one-over-area’s:

?ij =

{
1

Area(trianglei)
i = j

0 otherwise

Primal 1-form to Dual 1-form: Here we have to make some decisions. We’re moving from
edges to dual edges, so a natural method to convert the integrated 1-form over a primal edge ei to
its value on the dual edge e? is to scale by the ratio of edge lengths:

?ω =
| e? |
| ei |

ω

Now, the problem is we haven’t specified where the dual vertices exist spatially, and therefore have
no idea where our dual edges live either. We only know topologically that there exists a dual edge
between two dual vertices. We’ll choose the dual vertices to be located at the circumcenter of
their primal face counterparts (circumcenter is the center of the circle that passes through all three
triangle vertices). This choice has some interesting implications if our mesh has obtuse triangles,
but we’ll disregard that for now. Still, doing this ensures that the dual edge e? is perpendicular to
ei, and results in a nice (and familiar) formula for the edge length ratio in terms of the opposite
angles αi and βi:

| e? |
| ei |

=
1

2
(cotαi + cotβi)



Figure 4: Choices of dual cell construction, partitioning area of a primal face. In the mixed Voronoi
cell case, we place the dual vertices based on the Barycentric cell when the Voronoi cell would yield
strange results (e.g. when a triangle is obtuse), and place the dual vertices based on the Voronoi
cell otherwise.

Primal 0-form to Dual 2-form: Similar to the case of converting a primal 2-form to a dual
0-form, this will involve scaling by an area, specifically the area of the dual face. Again, we’ll have
a diagonal matrix of areas:

?ij =

{
Area(celli) i = j

0 otherwise

Here we have another decision to make. How should the area of a primal face be partitioned
amongst the dual faces? We could again go with placing dual vertices at the circumcenter of each
primal face, then connecting the dots to construct essentially a Voronoi cell, but there are many
options to choose from (see Fig. 4). In the case of the Barycentric cell, thin triangles can result in
an odd dual cell that isn’t necessarily convex. In the case of the Voronoi cell, we may have dual
vertices that aren’t actually contained within their primal face counterpart. The mixed cell method
tries to take the best of both worlds by choosing one or the other based on the angle adjacent to
the current primal vertex.

2.4 De Rham Complex

What we get out of all these constructions is something called a de Rham Complex (see Fig. 5). We
have a nice way to go from primals to duals, primal 0-forms to 1-forms to 2-forms, and dual 2-forms
to 1-forms to 0-forms. Additionally, we can go from primal 2-forms to 1-forms to 0-forms with one
more operation called the co-differential δ, which can be expressed as simply a composition of other
operations:

δ ≡ − ? d?

We can clearly see this equivalence in Fig. 5. Say we start with a primal 2-form on a primal face.
Applying the star operator takes us to a dual 0-form on a dual vertex. Taking the differential gets
us to a dual 1-form on a dual edge. And finally, another star operator brings us to a primal 1-form
on a primal edge.

Note: Not every route through the de Rham Complex is meaningful or useful. In particular,
a differential operator dk operating on k-forms followed by another differential operator dk+1 oper-
ating on (k + 1)-forms isn’t useful, because it can be shown that the matrix dk+1dk = 0.



Figure 5: De Rham Complex. ? = Hodge star operator, d = differential operator, δ = co-differential
operator ≡ − ? d?.

2.5 Hodge Laplacian

We define another operation called the Hodge Laplacian as essentially all the ways you can move
through the de Rham complex and get back to the form you started with:

∆ = d ? d ?+ ? d ? d

These are the only two ways of looping through and returning to the original k-form because, as
the previous note stated, dk+1dk = 0, so essentially we can’t move twice to the left in primal space
or twice to the right in dual space (see Fig. 5).

0-form Example: Suppose we apply the Hodge Laplacian on a 0-form. Using the first term
d ? d?, if we take star of a 0-form we get a 2-form. Then taking the differential of a 2-form we
get a 3-form. And a 3-form on a 2-dimensional object (our surface) is nothing (see last lecture for
proof). So the first term is gone. Using the second term ?d ? d, it turns out that the d ? d portion
is nothing more than the cotangent Laplacian we’ve seen many times before, and the last ? is just
the area weights we defined earlier!

2.6 Helmholtz-Hodge Decomposition

Using these operators, we can decompose the vector field on a surface into three separate parts – a
divergence-free or curl component, a curl-free or divergence component, and a harmonic component
which is both divergence-free and curl-free (see Fig. 6).

Computing Decomposition: Suppose we have a 1-form ω (which has an associated vector
field we’re interested in decomposing), and we write it out as three components in the following
way:

ω = δα+ dβ + γ

δγ = 0, dγ = 0

Now by applying the δ operator to the equation for ω, and recalling that applying d twice results in
zero (and therefore applying δd does the same), we find an equation for dα. Similarly, by applying



Figure 6: Helmholtz-Hodge Decomposition of a torus.

the d operator to the equation for ω, we find an equation for δβ. Finally, we can find γ in terms of
the others to get the following set of equations:

δdα = δω

dδβ = dω

γ = ω − δβ − dα

3 Image Sources

• Figure 1 – http://brickisland.net/cs177/wp-content/uploads/2011/11/ddg divergence theorem.svg

• Figure 3 – http://brickisland.net/cs177/

• Figure 4 – http://graphics.stanford.edu/courses/cs468-12-spring/LectureSlides/05 Diff Geo.pdf

• Figure 5 – http://ddg.cs.columbia.edu/SIGGRAPH06/DDGCourse2006.pdf

• Figure 6 – http://users.cms.caltech.edu/ keenan/pdf/DGPDEC.pdf
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