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Vector Calculus




Famous Theorems (in R?)

/divﬁ’dA:/ v -1 dl
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“Divergence Theorem”

/curwdA:/ 7-tdl
(2 0f)

“Green’s Theorem”



Famous Theorems (in R?)

N /divﬁdA:/ 7.7 dl
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“Divergence Theorem”
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“Green’s Theorem”




Exterior Calculus

Extension of vector calculus
to surfaces (and manifolds).




Everything
must be
Intrinsic!

f

Vector fields are
tangent!



Differential Forms

For each point p on a surface:

k vectors in Dl:fferential
the tangent — > ]R
space at p k -for m
k-linear
Alternating

[Sanity check: In n dimensions, p-forms
are zero for p > n.]



Easiest Example

Y f: Zl%

o-form

http://perception.inrialpes.fr/Publications/2011/ZBH11a/scale-g9.png



Differential One-Forms

Vector field
vy —= T C RS

o[l

1-form w:

ﬁ ﬁ

w(T) =72




Trivia: Musical Isomorphisms

V poco allargando ‘—#E#_
_h tl — #T . P ] #
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||||||||||||||||||

Sharp operator raises indices



Trivia: Musical Isomorphisms

oooooooooooooo

Flat operator lowers indices



Evaluating One-Forms
w(v) = Zwivi
i

No metric matrix g



Zoo of Operators

wﬁ 1-form to vector
,6’|? Vector to 1-form
dw Exterior derivative
* (L) Dual

k-forms > (n-k)-form (plane to its normal)

Wl /\ wz Product of forms

k,p-forms = (k+p)-form (cross product!)



Integration of k-Forms
W
/wz /w(T) ds
Y Y

Measures amount
/}/
of w parallel to y

Integrate on k-dimensional objects



Stokes’ Theorem

http://brickisland.net/cs177/wp-content/uploads/2011/11/ddg_divergence_theorem.svg
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Discrete Exterior Calculus (DEC)

Discrete version of
exterior calculus.

Wf P wi Awo *w dw



Oriented Simplicial Complex




Dual Complex




Store integrals of
forms!



Discrete o-form

[w= 1) >RV

O U

Store integrated quantities!



Discrete 1-form

/w%R'm

Store integrated quantities!




Discrete 2-form

/w%R'Fl
t

Store integrated quantities!




Exterior Derivative




Exterior Derivative

7 e RIEIXIV]

consists of 1, o, -1
W2
€
dw = W= Wy — W1
e Oe
W1




Exterior Derivative

7 c RIFIXIE

consists of 1, o, -1




Exterior Derivative

7 c RIFIXIE




ccd2 _ 077

Two different d matrices




Hodge Star: Idea

Moves to dual mesh



Hodge Star

Primal 2-form
Dual o-form

Moves to dual mesh



Hodge Star

Primal 1-form
Dual 1-form

Moves to dual mesh



Hodge Star Matrices




Hodge Star Matrices
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http://brickisland.net/cs177/




Primal 2-Form / Dual o-Form
q-<

x;; = Area(triangle z’)_l

Just triangle areas



Primal 2-Form / Dual 1-Form

Ratio of edge length



Primal 2-Form / Dual 1-Form

Choice of dual: Circumcenter



Primal o-Form / Dual 2-Form

x;; = Area(cell 7)

Area of dual cell



Barycentric Lumped Mass

Area/3 to each vertex



Additional Options

Edge midpoint

Barycentric cell Voronoi cell Mixed cell
c¢; = barycenter c; = circumcenter
of triangle of triangle

http://graphics.stanford.edu/courses/cs468-12-spring/LectureSlides/os_Diff_Geo.pdf



Mixed Voronoi Cell

If 0 <m/2, ¢, is the circumcenter
of the triangle (v. , v, v,., )

If © > 1/2, ¢, is the midpoint of
the Edge (vr' > Vit )

AWV)= ) (drea(c,,v,(v+v,)/2)+ Area(c,,,v,(v+v,)/ 2))
v;EN(v)

http://graphics.stanford.edu/courses/cs468-12-spring/LectureSlides/os_Diff_Geo.pdf



Discrete deRham Complex

O-forms (vertices) ]-forms (edges) 2-forms (faces) 3-forms (tets)

http://ddg.cs.columbia.edu/SIGGRAPH06/DDGCourse2006.pdf



Co-Differential

THEOREM. (df,a) = —(08,*d* o)

0 = — xdx




Hodge Laplacian

ANA=dxd*x+xdxd




o-Form Laplacian

Cotangent Laplacian



o-Form Laplacian

A = dwdx +xd*d

Area weights




Helmholtz-Hodge Decomposition

/ (P 2
I \\\j

e e

=

tp://users.cms.caltech.edu/~keenan/pdf/DGPDEC.pdf



Helmholtz-Hodge Decomposition

tp://users.cms.caltech.edu/~keenan/pdf/DGPDEC.pdf



Computing the Decomposition




One-Form Laplacian Eigenforms

AM—*dB+da+7v) == Aw

= (d*xd*x+*xdxd)(00 + da + )
= (dxdx+*d*d)(—*xdx 3+ da)
= —xdxdxdx [+ d*xdx*do

= — xdAB + dA«




Recommended Reading

The Helmholtz-Hodge Decomposition - A Survey

Harsh Bhatia, Student Member IEEE, Gregory Norgard, Valerio Pascucci, Member IEEE, and
Peer-Timo Bremer, Member IEEE

Abstract—The Helmhaliz-Hodge Decomposition (HHD) describes the decomposition of a flow field into its divergence-free and curl-
free components. Many researchers in various communities like weather modeling, oceanology, geophysics and computer graphics
are interested in understanding the properties of flow representing physical phenomena such as incompressibility and vorticity. The
HHD has proven to be an important tool in the analysis of fluids, making it one of the fundamental theorems in fluid dynamics. The
recent advances in the area of flow analysis have led to the application of the HHD in a number of research communities such as flow
visualization, topological analysis, imaging, and robotics. However, since the initial body of work, primarily in the physics communities,
research on the topic has become fragmented with different communities working largely in isolation often repeating and sometimes
contradicting each others results. Additionally, different nomenclature has evolved which further obscures the fundamental connections
between fields making the transfer of knowledge difficult. This survey attempts to address these problems by collecting a comprehensive
list of relevant references and examining them using a common terminology. A particular focus is the discussion of boundary conditions
when computing the HHD. The goal is to promote further research in the field by creating a common repository of techniques to
compute the HHD as well as a large collection of example applications in a broad range of areas.

Index Terms—Vector fields, Incompressibility, Boundary Conditions, Helmholtz-Hodge decomposition.
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Simple Application

(a) (b)
Fig. 1. (a) Motion field in a anticlockwise rotating hurricane sequence extracted using the BMA.

(b) The divergence free potential function with a distinct maximum and corresponding contours.

Palit, Basu, Mandal. “Applications of the Discrete Hodge Helmholtz Decomposition to
Image and Video Processing.” LNCS.



Fluid Simulation

Stam. “Stable Fluids.” SIGGRAPH 1999. (and many others)

Incompressible: No divergence



Vector Field Editing

Tong et al. “Discrete Multiscale
Vector Field Decomposition.”
TOG 2003.




Computational Physics

Stein and Nordlund.
“Realistic Solar Convection
Simulations.”

Solar Physics 2000.




Computational Physics
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Bahl and Senthilkumaran. “Helmholtz Hodge Decomposition of Scalar Optical Fields.” J.
Opt. Soc. Am. A 2012.



Reconstruct VF from Noisy Samples

Gyr(x) = Hop(x) —tr{Ho(x)} I
—Ho(x

Macedo and Castro.
“Learning Divergence-Free and Curl-Free Vector Fields with Matrix-Valued Kernels.”
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Wrapping Up for Today

Another cotangent
Laplacian

Helmholtz-Hodge
Decomposition

Many more applications!
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