CS 468 LECTURE 15: ISOMETRIES, RIGIDITY, AND
CURVATURE

ADRIAN BUTSCHER (LECTURER)
AND MICHAEL LINDSEY (SCRIBE)

1. OUTLINE

In this lecture we will introduce the Riemann curvature tensor, an intrinsic object
which is, in general, quite unwieldy. However, in two dimensions (i.e., on surfaces),
the Riemann curvature tensor is essentially one number, the Gauss curvature. Thus
we will see that the Gauss curvature can actually be characterized intrinsically.

To get to the Riemann curvature tensor, we will first return to our discussion of
the exponential map from Lecture 9. The exponential map is an intrinsic object,
and we will use it to parameterize small neighborhoods of a surface. We proved in
a previous lecture that the exponential map is a diffeomorphism near the origin,
and in this lecture we will use this diffeomorphism to construct a parametrization
of a surface and talk about the induced metric in the corresponding coordinates.

After introducing the Riemann curvature tensor, we will then cover the Theo-
rema Egregium, which describes (in two dimensions) Gauss curvature as the im-
portant local intrinsic invariant of a surface.

We will close the lecture with a discussion of isometries and isometric invariance.

2. THE EXPONENTIAL MAP

We first recall the definition of the geodesic exponential map of a surface S at a
point p € S. Define exp, : U — S by exp, (V) := (1) for V. e U C T},S, where v
is the unique geodesic through p in direction V, i.e., with 4(0) = p and 4(0) =V
. Notice that the exponential map corresponds to traveling a unit distance along
this geodesic.

The proof of the existence and uniqueness of such a geodesic was outlined in a
previous lecture. The geodesic equations were a system of second-order ODEs, and
a theorem from the theory of ODEs guarantees the existence and uniqueness of a
solution to this system given the two initial conditions v(0) and +(0). This theo-
rem, however, only guarantees a local solution to the geodesic equations. We need
norm of the argument V' to be sufficiently small in order to guarantee the existence
and uniqueness of the desired geodesic corresponding to V', i.e., to guarantee that
the exponential map is well-defined. So we choose an open domain ¢ C T}, small
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enough such that the exponential map is well-defined.

Recall from a previous lecture that the differential of the exponential map at
the origin is the identity map, which is of course invertible, so the exponential map
itself is locally invertible by the inverse function theorem. So if we take the domain
U to be a small enough ball, the exponential map exp, : ¢« —V C S is a diffeomor-
phism, where V = exp,,(U).

The following are some important facts relating to the exponential map:

e Although we will not prove this, we can assume without loss of generality
that we can take the domain U such that ¢/ and its image ) are geodesically
convex, i.e., the geodesic between any two points in U (or V) lies within U
(or V).

e The curve ¢ — exp,(tV) is a geodesic for each V' € U. This follows directly
from the definition of the exponential map.

3. GEODESIC NORMAL COORDINATES

Idea: given our diffeomorphism from the tangent space to the surface itself, we
can construct coordinates (i.e., a local parameterization) for the surface. We have
a mapping from the tangent plane into the surface, and we want a mapping from
R? into the surface (i.e., a parameterization).

Choosing a basis for the tangent space gives us an obvious isomorphism between
the tangent space and R2.

Let e1,ey form a basis for T,5. Without loss of generality (by applying the
Gram-Schmidt process), we can assume that this is an orthonormal basis. Let
Y R? — T,9, defined by (a!',2%) — x'e; + z%es, be the obvious vector space
isomorphism between R? and the tangent space. Then this gives a local parama-
terization of the surface ¢ = exp, o), where d(at,2?) = expp(xlel + 2%ey) for a
vector (z!,2?) € R?.

We restrict the domain of ¢ to only a ball of radius r about the origin, B,.(0),
where 7 is small enough such that (B, (0)) C U.

We list some important properties of this construction:

(1) Straight lines through the origin in B,.(0) are geodesics.

(2) The induced metric is Euclidean (through first order) at the origin in the
parameter domain B,(0). More precisely, g;j(x) = d;; + O(||z|]?) for z €
B,.(0), where ¢;; is the Kronecker delta. This expression is an abbreviated
Taylor series expansion of the metric in geodesic normal coordinates.

(3) The Christoffel symbols vanish at the origin in the parameter domain B,.(0).

To see (1), note that straight lines through the origin in the parameter domain
B,(0) map under % to straight lines in the tangent space. Of course, letting | be
the straight line through the origin given by [(t) = t(x},x3), we have 1 o y(t) =
t(zher + xea), so p ol is given by t — exp,(tV) where V = zje; + xfes € U.
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Hence by our previous observation, straight lines through the origin map under ¢
to geodesics. We cannot, however, make any such statement about straight lines
that do not pass through the origin.
We will prove properties (2) and (3) together. First recall from above that

[D epr]((Lo) = ld
and from our definition of ¢ that

b(a',a?) = exp,(a'er + aes).
So it follows that

99

%(070) = [Dexp,l,0)(e1) = e1,
0
87;;(0’0) = [Dexp,)(0,0)(e2) = ea.

Hence from the definition of the induced metric,

0 0
550.0) = ( 50,0 750,0)) =5y

So up through zeroth order, the induced metric is Euclidean. We can see from
the proof that we have essentially forced this to be true by choosing e, es to be
orthonormal. The more interesting content of the second property above is that
the induced metric is actually Euclidean through first order.

For this, it remains to show that giig (0,0) = 0 for all ¢, j, k. We will actually see
that it will suffice to show that the Christoffel symbols Ffj(O, 0) = 0 for all ¢, 7, k.
This fact is the third property listed above, so we will prove both simultaneously.
To begin, recall the definition of these Christoffel symbols: Vg, E; = 3", Fijk ,

where the E; are the coordinate vector fields gﬁ

So, using the metric compatibility property of the covariant derivative, we see
that

Bgi» 0 . i
(%Z = ok (Ei, Ej) = (VE,Ei, Ej) + (Ei, Vg, Ej) = T}, + T}

The final equality above uses the definition of the Christoffel symbols and the or-
thonormality of the FE;.

So indeed it will suffice to show that I'};(0,0) = 0 for all 4, j, k.

Recall that straight lines through the origin in the parameter domain map to
geodesics on the surface. So letting [ be the straight line through the origin given
by {(t) = tV for some vector V', we have that [ must satsify the geodesic equation,
ie., Vii(t) = 0. Since [ = V, we see that V'V = 0 at the origin for all vectors V



CS 468 LECTURE 15: ISOMETRIES, RIGIDITY, AND CURVATURE 4

in the parameter domain (because all straight lines through the origin contain the
origin). So let V' = E; + Ej;. Then Vg, g, (E; + E;) = 0 at the origin.

So Vg, Ei+ Vg, E; +VEg,E;+ Vg, E; =0 at the origin by linearity in both slots
of the covariant derivative.

Since the first and last terms in the left hand side above are zero at the origin,
it follows that Vg, E; + Vg, E; = 0 at the origin.

The torsion-free property of the covariant derivative implies that Vg, E; =
Vg, E; + [E;, Ej]. Note that the Lie bracket term [E;, Ej] = 0 because the Fj are
the coordinate vector fields (the interested reader can see the lecture 11 supplement
for more details on the Lie bracket and the proof of this fact). So Vg, E; = Vg, E;.

Now we have that 2V, E; = 0 at the origin. Hence Vg, E; = Y, T E) = 0,
so all the coordinates Ffj of this vector are zero at the origin, as was to be shown.
This completes the proof of the above properties.

4. LocAL RiGIpDITY

The following discussion of rigidity is local in that it applies to a neighborhood
of a point on a surface. We have found coordinates that make the induced metric
Euclidean (through first order) near a point. An early question in differental ge-
ometry which motivated Riemann was whether we could do better than this. Can
we change coordinates to make the metric trivial, i.e., Euclidean everywhere?

The answer was thought to be “no” for a long time. This is the so-called “map-
maker’s problem.” The existence of a parameterization that gives a trivial metric
would mean that measuring lengths on the surface is equivalent to measuring them
in the parameter domain, i.e., we could have a map of, say, the Earth which does
not distort lengths. It was conjectured for some time that a map that does not
distort lengths is an impossibility. If this is indeed impossible, we would like to
know mathematically why this is the case, and whether we can at least we find
coordinates that are Fuclidean to second order near a point.

The answer to these questions is that we indeed cannot (in general) find a co-
ordinates the are Euclidean even to second order. We will only give a very rough
sketch of the proof of this fact. (The interested reader should see Spivak’s A Com-
prehensive Introduction to Differential Geometry for a complete proof of this fact.)
The basic idea is that we can come up with a system of equations in which the
parameterization is unknown. This system essentially writes the components of the
metric in terms of the unknown parameterization and set them equal to d;;. It turns
out that this system is overdetermined. There are two unknown functions (the pa-
rameterizations), and there are “lots” of equations (three of them in dimension two).

So we check the “integrability conditions” of this system, i.e., the conditions that
must hold for a solution to exist. These conditions turn out to be expressible in
terms of the Christoffel symbols (and their derivatives):
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ors ors
0= axjik _ axZJk + T, T3, —ThTs,

for all 7,7, k, s.

The Christoffel symbols are combinations of first derivatives of the metric, so
we see that some combination of second derivatives of the metric must vanish if
the mapmaker’s problem is to have a solution. The right hand sides of these equa-
tions can be understood as quantifying the local rigidity of a surface. In general,
curved surfaces are “rigid” in that they cannot be flattened out without distorting
distances. If the above expressions are zero, then the surface is “flexible” enough to
be flattened (into a map, for example) without distortion of lengths.

5. GAuss’ ToTaALLY AWESOME THEOREM

We define the Riemann curvature (3, 1)-tensor of S by
Rm(X,Y,Z) :=VyVxZ - VxVyZ - Vixy|Z,

where X, Y, Z are vector fields. Notice the covariant derivative of a vector field is
a vector field, so Rm, a (3, 1) tensor, indeed returns a vector field.

We can expand on a basis {e;}, giving:
Rm = Z Rfjkwi ®w @ Wk ® E;,
ijks
where R} is the s-component of Rm(e;, e, e;). Computations that are omitted
here (deferred to the homework) show that
o e 0T,
ijk or’ oz

+ Fz'krft - ng]:‘;t'

Note that the right hand side of this equation is the same expression from the
integrability conditions discussed above. This relationship can be viewed as a mo-
tivation for the definition of the Riemann curvature tensor.

We will provide another roughly intuitive motivation for the Riemann curva-
ture tensor. In Euclidean space, “second partial derivatives of vector quantities
commute,” i.e., V¢, Ve, = V., V., where the e, are standard basis vectors. In
non-Euclidean space, Rm is not identically zero and can be viewed as measuring
the failure of commutativity of V., V., and V., V., (noting that the Lie bracket of
coordinate vector fields is zero).

The Theorema Egregium (“Totally Awesome Theorem”) of Gauss relates the
very abstractly constructed Riemann curvature tensor to the more concrete second
fundamental form. This is significant because the Riemann curvature tensor is an
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intrinsic object, while the second fundamental form is extrinsic. With the second
fundamental form denoted by A, the theorem states that

R+ (Ajp A — Ay A5) =0
where Af =3, g5 Ay .

Derivation: Let V be the covariant derivative in Euclidean space. Recall that
if we define two vector fields X,Y and on a surface and let N be the unit normal
vector field, then

VxY = (VxY)l + (VxY)' = VxY + A(X,Y)N

by the definition of the covariant derivative and the characterization of the second
fundamental form given in Lecture 11.

Now for basis vector fields F;:
Vg, Ve B, =VE Ve, Ex,

so it follows that

0 = (Ve,VgEr—Vg Vg Ey, E)
= (Vg, (Vg Ex + A(E;, Ex)N) ,E) — (Vg, (VE,Ex + A(E;, Ex)N) , E) .

The term on the left can then be written using the product rule for the covariant
derivative:

(VE, (VE,Ey) + (Ej - A(E;, Ey,)) N + A(E;, E,)VE, N, E))

“n

where the indicates the action of the vector field on a function by directional
derivation. We can then rewrite this expression, using the facts that N L Ej and
A(Ej,El) = — <VEJ.N, El>, as
(VE, Vg Ep, E) — A(E;, Ey)A(E;, E)).

= 1L
(Vi, Vi Br B) + (Vi (VB ER) S B ) - A(B:, By)A(E;, )
(VE, Vg Ei, B) — A(E;, Ey)A(E;, E).

So we have shown that
0={(VE,VE Ew, E) — A(E;, Ey)A(E;, E) — (VE, (Vg Ex + A(Ej, Ex)N) , Ey)

and by a similar computation, we see that the rightmost term in this equation can
be written

(VEVEEy, E) — A(Ej, Ex)A(E;, Ey),
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so we have:

(VE,VE Er, El) — (VE, V5 B, B) = A(E;, Ey)A(E;, Ey) — A(E;, Ey) A(E;, Ey).

A bit more calculation, omitted here, transforms the left hand side into the
curvature tensor and the right hand side into the expression involving the second
fundamental form in the statement of the the theorem.

6. INTERPRETATION

We can obtain a Riemann curvature (4, 0)-tensor from the (3, 1)-tensor defined
above with coordinates R;jp := ), Gis B -

In two dimensions, there is essentially (up to sign) only one nonzero num-
ber that can be obtained among all choices of 7,7, k,I. We write this number:
R1212 = _(A11A22 — A%Q) (We could also consider RQHQ, for example.l) In an
orthonormal basis, Ri212 = —det A, and of course det A is the Gauss curvature.
Therefore, the Gauss curvature is in fact an intrinsic quantity.

7. ISOMETRIES

An isometry is a mapping from a surface to another surface (or itself) which
preserves the metric at corresponding points. In other words, if S and S’ are surfaces
with metric g and ¢, then the surfaces are isometric if there exists ¢ : S — S’ such
that for all X,,,Y, € 7,5 and all p € S, we have that

9/(D¢(Xp)a Déf’(Yp)) = Q(Xp> Yp)-

Notice that D¢ pushes forward tangent vectors from T,S to Ty, S’, so our
precise definition coincides with our initial notional description of isometry. We
can understand an isometry as preserving the intrinsic geometry at corresponding
points.

A simple example of an isometry is the isometry induced by a rigid motion of R3.

Not all isometries are induced by rigid motions. The catenoid and the heli-
coid (shown at left and right below, respectively) are isometric. The isometry
between these two surfaces is fairly complicated, but intrinsically, the surfaces are
the same. (Roughly speaking, the little “squares” in one image map to nearly iden-
tical “squares” in the other image.)

1Yeah, it’s a Rush reference.
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Let us consider a vertically-oriented cylinder (of infinite vertical extent). A cylin-
der clearly has some isometries. We can map the cylinder to itself isometrically by
vertical translation. We can also rotate the cylinder. These maps are both induced
by rigid motions of R3. We can think of the cylinder as a wrapped plane (or a
wrapped piece of paper, which is not permitted to deform intinsically). We can
come up with a wide variety of similar developable surfaces by gluing together the
opposite ends of a “sheet of paper” which may not enjoy rotational symmetry like a
cylinder. However, such surfaces have a corresponding isometry given by traveling
around the surface without moving in the vertical direction. This isometry, how-
ever, is not given by a rigid motion of R3.

As another example, consider the following “amphora” or “bowling-pin” surface
of revolution:

The symmetry of this shape allows for a family of isometries induced by rigid
motions (rotations and reflections). We casually note here the difference between
a continuous family of isometries like a family of rotations and a discrete isometry
like a reflection.

Now consider the surface obtained by “popping” the neck of the amphora inward:
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If the surface near the transition to the neck is flat enough (i.e., to second order),
then the induced metric cannot “tell the difference” between these two surfaces. So
we have a discrete isometry which is not induced by any rigid motion.

Isometries are very rare. Riemann curvature is invariant under isometry, so a
necessary condition for a mapping to be an isometry is that the two surfaces in
question have the same Riemann curvature tensor at corresponding points.



