
CS 468

Differential Geometry
for Computer Science

Lecture 15 — Isometries, Rigidity and Curvature



Outline

• Geodesic normal coordinates

• Local rigidity — Gauss curvature and the Theorema Egregium

• Isometries and isometry invariance

• Global rigidity — Gauss-Bonnet theorem



The Exponential Map

Recall: The geodesic exponential map of a surface S at p ∈ S is
the mapping expp : TpS → S defined by

expp(V ) := γ(1)

where γ is the unique geodesic through p in direction V .

Key facts:

• There are open sets U ⊆ TpS containing the origin and V ⊆ S
containing p so that expp : U → V is a diffeomorphism.

• W.l.o.g. U and V are geodesically convex.

• The curve t → expp(tV ) is a geodesic for each V ∈ U .



Geodesic Normal Coordinates

We can use expp to create local coordinates near p ∈ S .

• Choose an orthonormal basis e1, e2 for TpS .

• Choose r so that x1e1 + x2e2 ∈ U for all (x1, x2) ∈ Br (0) ⊆ R2.

• Define φ : Br (0)→ S by φ(x1, x2) := expp(x1e1 + x2e2).

Properties:

• Straight lines through the origin in Br (0) are geodesics.

• The induced metric is Euclidean at the origin in Br (0).

• The Christoffel symbols vanish at the origin in Br (0).

gij(x) = δij +O(‖x‖2) x ∈ Br (0)



Local Rigidity

We can thus find coordinates that make the induced metric
Euclidean to first order at any point.

Question: Can we do better?

• For instance, can we achieve the ultimate simplification — can
we make the metric Euclidean in an entire neighbourhood?

• Or how about just Euclidean to second order at any point?

NO! A fundamental fact is

• The equations we’d have to solve to achieve a Euclidean metric
to more than second order are overdetermined.

• There are integrability conditions that have to hold:
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Gauss’ Totally Awesome Theorem

We can interpret the integrability condition in terms of curvature.

• Define the Riemann curvature (3,1)-tensor of S by

Rm(X ,Y ,Z ) := ∇Y∇XZ −∇X∇YZ −∇[X ,Y ]Z

• Thus we can expand Rm =
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• Now we have the Theorema Egregium of Gauss that relates the
Riemann curvature tensor to the second fundamental form:
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Interpretation

Let Rijk` :=
∑

s g`sR
s

ijk be the Riemann curvature (4,0)-tensor.

In two dimensions, the Theorema Egregium shows that the only
independent term in Rijk` is

R1212 = −
(
A11A22 − A2

12︸ ︷︷ ︸
Determinant of A

)

The determinant of A (in an ONB) is the product of the principal
curvatures, also known as the Gauss curvature!

It’s an intrinsic quantity!



Isometries

Def: Surfaces S and S ′ with metrics g and g ′ are isometric if there
exists φ : S → S ′ s.t. for all Xp,Yp ∈ TpS and all p ∈ S we have

g ′(Dφ(Xp),Dφ(Yp)) = g(Xp,Yp) .

I.e. the intrinsic geometry is preserved at corresponding points.

Examples:

• Isometries induced from rigid motions of R3.

• Purely intrinsic isometries.

→ Non-planar developable surfaces.
→ Catenoid and helicoid.
→ Amphora and inverted amphora.
→ Infinitesimal isometries and Killing vector fields.



The Catenoid and the Helicoid Are Isometric



Rigidity

Isometries are rare.

Fact: Curvature is a local invariant under isometry.

• The key obstruction to the existence of local isometries.

• I.e. surfaces with different curvatures can’t be isometric.

• But surfaces with the same curvature are so — locally.

• Example: surfaces of constant curvature.

→ The exponential maps can be used for this purpose.

→ Choose a basis for TpM and TqN.

→ Now consider expN
q ◦
(

expM
p

)−1
.

Globally, it’s more complicated!



Gauss-Bonnet Theorem

The Gauss-Bonnet Theorem shows that curvature is also a global
invariant with a connection to topological type.

Theorem: Let S be a regular, oriented surface with piecewise-
smooth boundary consisting of consecutive curves C1, . . . ,Cn.

Let θi be the external angle at the Ci → Ci+1 transition.

Then the Gauss-Bonnet formula holds:∑
i

ˆ
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ˆ
S
KdA = 2πχ(S)

where kC is the geodesic curvature of C and K is the Gauss
curvature of S and χ(S) is the Euler characteristic of S .



Sketch of the Proof

• Carve S up into small triangular patches, each topologically
equivalent to a disk.

• Apply the local Gauss-Bonnet theorem to each patch, and add
up all contributions appropriately.

• The local Gauss-Bonnet theorem itself has a number of steps.

1. Introduce an orthogonal coordinate system.

2. Define the angle φ between vector fields V ,W along a curve γ.

3. Relate φ′ to the covariant derivatives of V ,W along γ.

4. Let V = γ′ and W be a coordinate vector field. Relate ~kγ to φ′.

5. Integrate this relationship along γ and apply Green’s Theorem.

6. Apply the theorem of turning tangents.


