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DIFFERENTIAL GEOMETRY
FOR COMPUTER SCIENCE

Lecture 15 — Isometries, Rigidity and Curvature



Outline

Geodesic normal coordinates

Local rigidity — Gauss curvature and the Theorema Egregium

Isometries and isometry invariance

Global rigidity — Gauss-Bonnet theorem



The Exponential Map

Recall: The geodesic exponential map of a surface Sat pe S is
the mapping exp,, : TS — S defined by

exp, (V) :=~(1)
where 7 is the unique geodesic through p in direction V.

Key facts:

e There are open sets { C T,S containing the originand V C S
containing p so that exp, : U — V is a diffeomorphism.

e W.lo.g. U and V are geodesically convex.

e The curve t — exp,(tV) is a geodesic for each V € U.



Geodesic Normal Coordinates

We can use exp,, to create local coordinates near p € S.
e Choose an orthonormal basis e, e for T,S.
o Choose r so that xle; +x%e; € U for all (x!,x?) € B,(0) C R?.
e Define ¢ : B,(0) = S by ¢(x!,x?) := exp,(x'e1 + x?e2).

Properties:
e Straight lines through the origin in B,(0) are geodesics.
e The induced metric is Euclidean at the origin in B,(0).

e The Christoffel symbols vanish at the origin in B.(0).

gi(x) =8 + O(Ix[I*)  x € B,(0)




Local Rigidity

We can thus find coordinates that make the induced metric
Euclidean to first order at any point.

Question: Can we do better?

e For instance, can we achieve the ultimate simplification — can
we make the metric Euclidean in an entire neighbourhood?

e Or how about just Euclidean to second order at any point?

NO! A fundamental fact is
e The equations we'd have to solve to achieve a Euclidean metric
to more than second order are overdetermined.
e There are integrability conditions that have to hold:
S
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Gauss' Totally Awesome Theorem

We can interpret the integrability condition in terms of curvature.

e Define the Riemann curvature (3,1)-tensor of S by
Rm(X, Y, Z) = VvaZ — vayz — V[X’y]z

e Thus we can expand Rm =} ., - R, w' ®w ®wk ® E; where

R..S = ar.lsk _ 8rlsk
ijk oxi OxJ

+ rfk re — I e

e Now we have the Theorema Egregium of Gauss that relates the
Riemann curvature tensor to the second fundamental form:

Ry’ + (AjAS — AiAs) =0 where A5 =" g Ay
t




Interpretation

Let Rjke :== >_, 8usR;;° be the Riemann curvature (4,0)-tensor.

In two dimensions, the Theorema Egregium shows that the only
independent term in Rjy is

Rizi2 = —( A11An — A})
————

Determinant of A

The determinant of A (in an ONB) is the product of the principal
curvatures, also known as the Gauss curvature!

It's an intrinsic quantity!



Isometries

Def: Surfaces S and S’ with metrics g and g’ are isometric if there
exists ¢ : S — S’ s.t. for all X,, Y, € T,S and all p € S we have

g,(D¢(Xp), D¢( Yp)) = g(Xp, Yp) .
l.e. the intrinsic geometry is preserved at corresponding points.

Examples:

e Isometries induced from rigid motions of R3.

e Purely intrinsic isometries.
— Non-planar developable surfaces.
— Catenoid and helicoid.
— Amphora and inverted amphora.
— Infinitesimal isometries and Killing vector fields.



The Catenoid and the Helicoid Are Isometric



Rigidity

Isometries are rare.

Fact: Curvature is a local invariant under isometry.
e The key obstruction to the existence of local isometries.
e |.e. surfaces with different curvatures can't be isometric.

e But surfaces with the same curvature are so — locally.

e Example: surfaces of constant curvature.
— The exponential maps can be used for this purpose.

— Choose a basis for T,M and T,N.

— Now consider exp)) o(exp}' )

Globally, it's more complicated!



Gauss-Bonnet Theorem

The Gauss-Bonnet Theorem shows that curvature is also a global
invariant with a connection to topological type.

Theorem: Let S be a regular, oriented surface with piecewise-
smooth boundary consisting of consecutive curves Cy, ..., C,.

Let 6; be the external angle at the C; — Cj41 transition.

Then the Gauss-Bonnet formula holds:

Z/C kC,(s)ds—i—ZG;—l—/stA:wa(S)

where k¢ is the geodesic curvature of C and K is the Gauss
curvature of S and x(S) is the Euler characteristic of S.




Sketch of the Proof

e Carve S up into small triangular patches, each topologically
equivalent to a disk.

e Apply the local Gauss-Bonnet theorem to each patch, and add
up all contributions appropriately.

e The local Gauss-Bonnet theorem itself has a number of steps.

1.

© 0 k~ w

Introduce an orthogonal coordinate system.

Define the angle ¢ between vector fields V', W along a curve ~.
Relate ¢’ to the covariant derivatives of V, W along ~.

Let V =~/ and W be a coordinate vector field. Relate k, to ¢'.
Integrate this relationship along v and apply Green's Theorem.

Apply the theorem of turning tangents.



