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Introduction. In geometry processing, it is often desirable to characterize
the shape of an object in a manner that is invariant to isometries — deforma-
tions of the object that involve bending without stretching, thereby leaving
intrinsic distances undisturbed. Examples where such characterizations are
useful include segmentation, symmetry detection, recognition, retrieval, fea-
ture extraction, and alignment.

This lecture introduces the mathematical definition of an isometry and
describes several shape descriptors that are used to characterize geometries
in an isometry-invariant manner.

Isometry. Let (X,d;) and (Y, dy) be metric spaces. A map f: X — Y is
a global isometry if

d1($7y) = d2(f<x)7f(y))

forevery xr € X and y € Y.

A related concept applies to the case in which X and Y are Riemannian
manifolds with metrics g; and go, and f is a diffeomorphism. The map f is
said to be a local isometry if

g1(v,w) = ga(fuv, faw)

for every pair of vector fields v and w on X. Here, f, : TX — TY denotes
the push-forward.

Shape Descriptors. A shape descriptor is an assignment of a real number
of tuple of real numbers h(x) € R" to each point x on a surface S C R3,



designed in such a way that the tuple stored at each location characterizes
the local geometry of the surface and describes the point’s “role” on the
surface. We have already seen examples of shape descriptors: the Gaussian
curvature K (x) = k1(x)ko(z) and the mean curvature H(z) = k() + ko)
are two such examples.

Several aims should be kept in mind when designing a good shape de-
scriptor. Clearly, h(z) should provide useful information about the point
x. It should be robust against noise in the triangulation and against small
deformations, and it should be intrinsic — that is, independent of the manner
in which S is embedded in R3. Finally, it should be invariant under rigid
motions and other isometries.

The Hodge Laplacian

A = dd + dé,

being an intrinsic operator, provides a useful starting point for the design
of many shape descriptors. To intuit its intrinsic nature, note, for example,
that solutions to the heat equation

u = Au

on a surface S are unaltered by isometries.

Global Point Signature. An example of a shape descriptor that relies
on the Hodge Laplacian is the Global Point Signature (GPS). This shape
descriptor assigns to each point x € S the sequence of real numbers

GPS(x) = (A 201(@). 25 P n(2), A Pl )

where \; are the eigenvalues of A and ¢; are the corresponding eigenfunc-
tions. Being derived solely from the Laplacian, the GPS is invariant under
isometries of S.

Let us also note that the GPS, viewed as a map from S to the space of
sequences of real numbers, is injective, provided the surface S does not self-
intersect. This follows from the fact the the eigenfunctions ¢1, ¢o, ... form
a basis for the space of smooth functions on S. Abstractly, one can think of
the image of this map as a surface in infinite-dimensional Euclidean space;
injectivity implies that this surface does not self-intersect whenever S does
not self-intersect.



The GPS suffers from a few drawbacks. It assumes that the eigenvalues
of A are unique, and can give rise to abrupt changes in GPS values when a
small deformation of the surface leads to a reordering of eigenvalues. Finally,
it is a nonlocal feature since the eigenfunctions of the Laplacian generally
have global support.

Heat Kernel Signature and Wave Kernel Signature. Two other pop-
ular shape descriptors that derive from the Laplacian are the Heat Kernel
Signature (HKS) and Wave Kernel Signature (WKS).
To define the HKS, let ki(x,y) denote the fundamental solution to the
heat equation
u = Au

on S. That is, k(x,y) is the value of the solution to the heat equation at
time ¢ and position x € S, assuming the initial condition is given by a delta

function centered at y € S. In terms of the eigenfunctions ¢; and eigenvalues
A; of —A,

ke(z,y) = Z e N pi(2) i (y)-
Fixing a time ¢, the HKS is then defined as

HKS(z) = ki(z,z) = Ze_’\"tgbi(xf

i

In words, the Heat Kernel Signature measures the amount of heat left at z
after ¢ units of time have transpired, assuming the initial heat distribution
was concentrated at x.

An example of the HKS at four points on a triangulated surface is shown
in Fig. 1. For short times, the four points have nearly identical heat kernel
signatures k;(x, z) since the local geometry (the tips of the dragon’s feet) is
roughly the same. At a later time, the heat kernel signatures k;(x, z) capture
more global information about the surface’s shape and diverge. In this sense,
the HKS is a multiscale shape descriptor.

The Wave Kernel Signature (WKS) is a shape descriptor of a similar na-
ture, except that it is based upon solutions to the Schrodinger wave equation

Ut = —ZAU
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Figure 1: Heat kernel signature.

Upon selecting a family of initial energy distributions fg(\), F = 1,2,...,
the WKS is defined as

WKS(x) = (Z di()? fr(N)?, Z ¢i(x)? fa(N)?, Z di(x)? fs(N)%, . . >

The entries of this vector correspond to the long-time averages of the squared
solution to the Schrodinger wave equation at position x, given the initial
energy distributions fg.

The HKS and WKS have similar advantages and disadvantages. Both
are isometry-invariant, easy to compute, and do not suffer from the danger
of eigenvalue “switching” under small deformations that we observed for the
GPS. Repeated eigenvalues are still an issue, however, and the WKS can
sometimes filter out large-scale features that might be worth retaining.

Shape descriptors like those discussed above have applications in a variety
of contexts, including feature extraction, correspondence between surfaces,
matching surfaces, and detecting discrete symmetries.

Continuous symmetries Much of the machinery developed above is use-
ful for detecting discrete symmetries, such as symmetries under reflection
about an axis. A related notion is that of a continuous symmetry — e.g.,
rotations and translations that leave the geometry invariant.

A Killing vector field is a vector field V' along which the metric is invariant.
Informally, distances between nearby points do not change when transported
along the flow of the vector field V.
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Figure 2: Family of curves ~(s).

To determine the conditions under which a vector field V' qualifies as a
Killing vector field, let vy be curve on S parametrized by arclength s, and
let y¢(s) denote the location of vy(s) after being transported along the flow
of V' by t units of time, as in Fig. 2. If distances are preserved, then the
parameter s represents arclength along the deformed curve ~;; hence

o)1l = Ili(s)ll =1

for every t. Differentiating with respect to time and using the symmetry of
mixed partials gives

Now since V (s) = 27,(s), we obtain

0= <T(s), %V(s)>
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Figure 3: Approximate Killing vector fields.

Equivalently,
0= <T, DTV> .

Finally, since D7V has the same component in the T direction as V7V (the
covariant derivative of V in the direction 7T") we conclude that

0= (T,VsV). (1)

For V' to be a Killing vector field, this relation must hold for every vector
field T on S.

Except on surfaces with high degrees of symmetry, it is often not possible
to find a vector field V' for which (1) holds exactly for every T'. Instead,
one can find approximate Killing vector fields via a least squares approach.

Denoting
PV =(T,VV),

we seek a V' which minimizes the Killing energy

/ |PVIP.
S

Some examples of approximate Killing vector fields are shown in Fig. 3.



