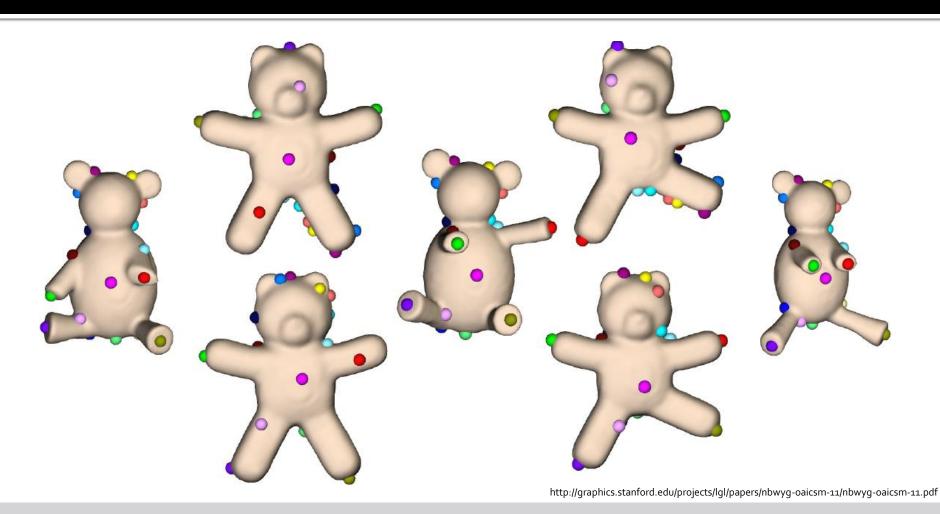


Isometry Invariance and Spectral Techniques

CS 468, Spring 2013
Differential Geometry for Computer Science

Justin Solomon and Adrian Butscher

Instances of "Same" Shape



Need to understand deformations

Deformation-Invariant Applications

- Segmentation
- Symmetry detection
- Global shape description
- Retrieval
- Recognition
- Feature extraction
- Alignment
- **-** . . .

Isometry

[ahy-som-i-tree]:

Bending without stretching.

Lots of Interpretations

Global isometry

$$d_1(x,y) = d_2(f(x), f(y))$$

Local isometry

$$g_1 = f^*g_2$$

 $g_1(v, w) = g_2(f_*v, f_*w)$

Intrinsic Techniques

http://www.revedreams.com/crochet/yarncrochet/nonorientable-crochet/

Isometry invariant

Isometry Invariance: Hope

Isometry Invariance: Reality

http://www.4tnz.com/content/got-toilet-paper

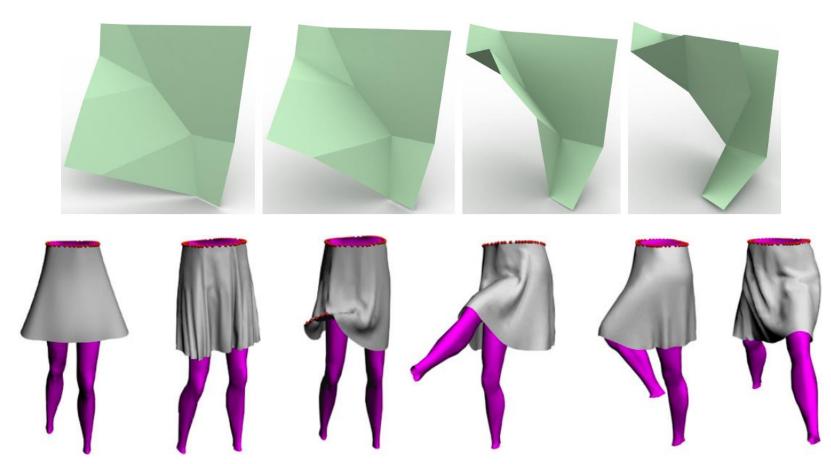
Few shapes can deform isometrically

Isometry Invariance: Reality

http://www.4tnz.com/content/got-toilet-paper

Few shapes can deform isometrically

Separate Thread in DDG



http://www.stanford.edu/~justso1/assets/discrete_developables.pdf

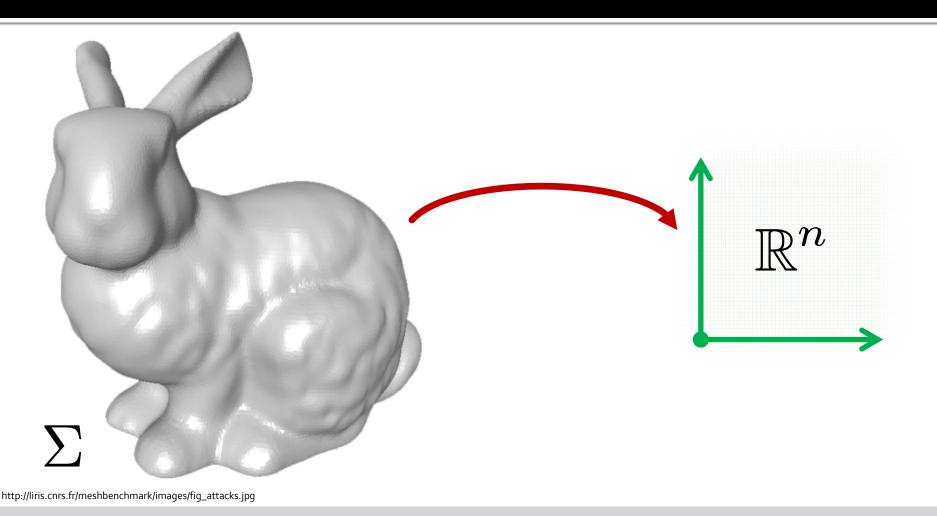
http://link.springer.com/article/10.1007%2Fs00371-010-0467-5

Developable surfaces and origami

Rigidity

Most surfaces cannot deform isometrically whatsoever.

Example Task: Shape Descriptors



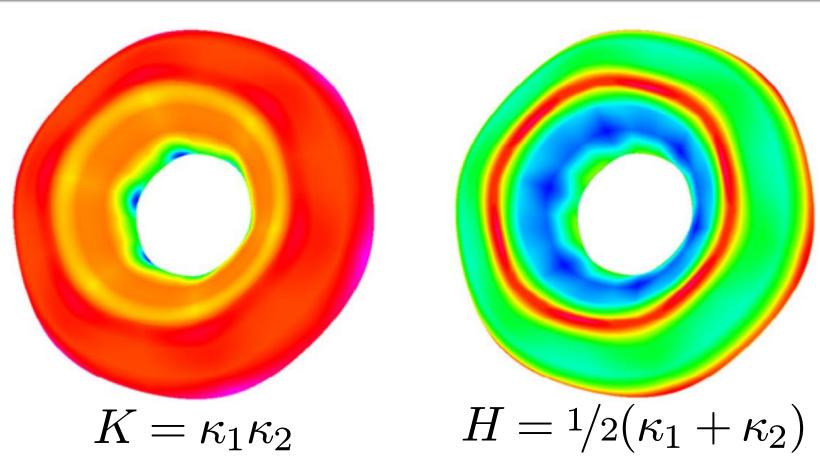
Pointwise quantity

Descriptor Tasks

Characterizelocal geometry

Describe a point's"role" on a surface

Descriptors We've Seen Before



http://www.sciencedirect.com/science/article/pii/Soo10448510001983

Gaussian and mean curvature

Desirable Properties

Distinguishing

Provides useful information about a point

Stable

Numerically and geometrically

Intrinsic

No dependence on embedding

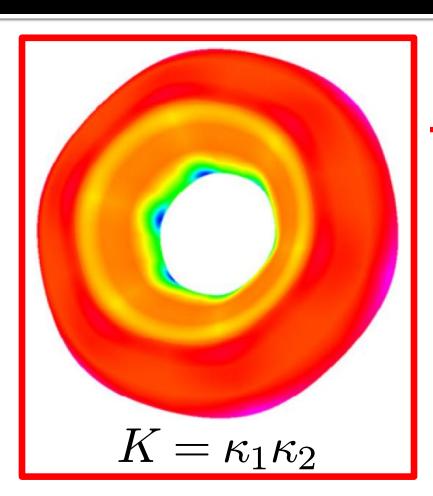
Intrinsic Descriptors

Invariant under

Rigid motion

Bending without stretching

Intrinsic Descriptor



Theorema Egregium

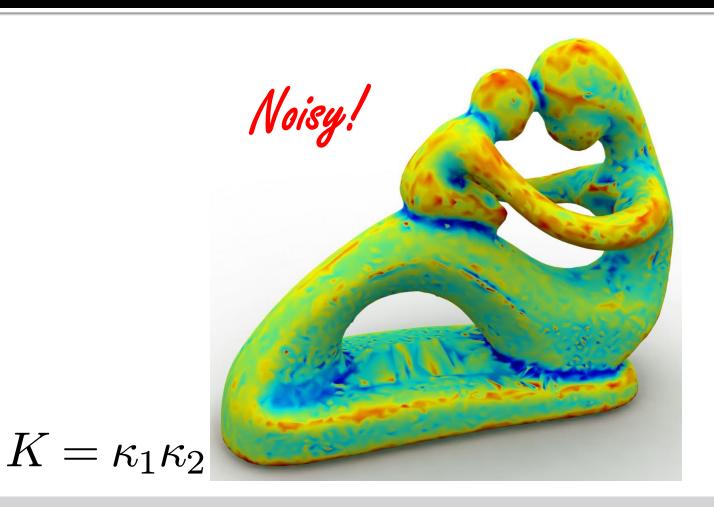
("Totally Awesome Theorem"):

Gaussian curvature is intrinsic.

http://www.sciencedirect.com/science/article/pii/S0010448510001983

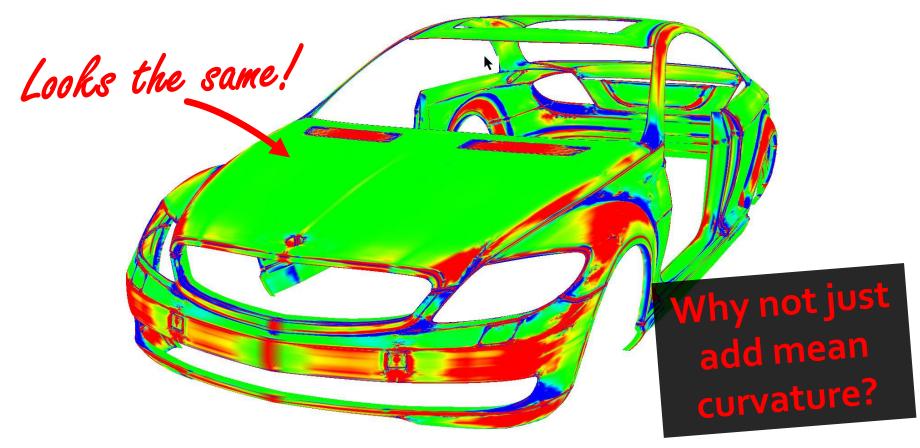
Gaussian curvature

End of the Story?



Second derivative quantity

End of the Story?



http://www.integrityware.com/images/MerceedesGaussian Curvature.jpg

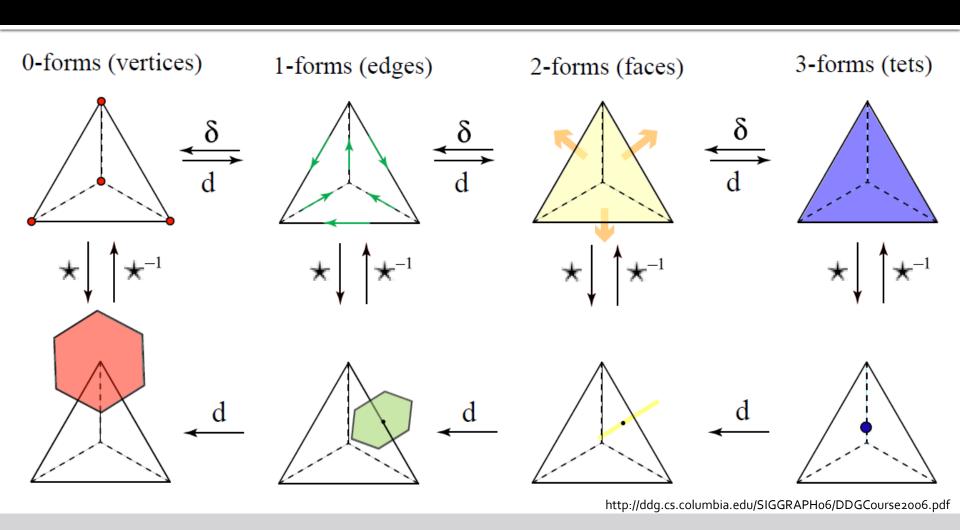
Nonunique

Desirable Properties

Incorporates neighborhood information in an intrinsic fashion

Stable under small deformation

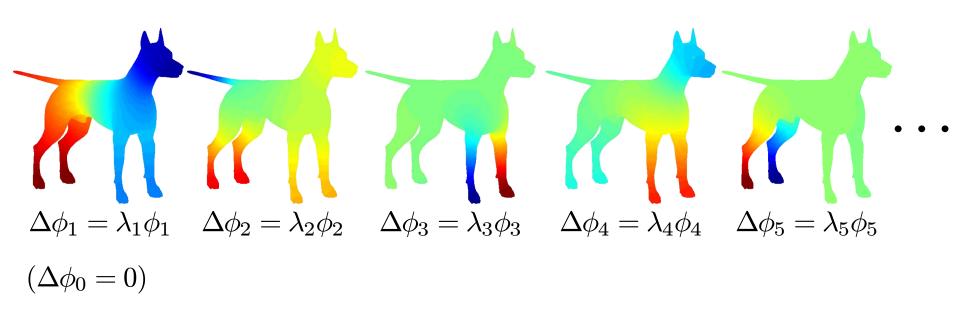
(Discrete) deRham Complex



Intrinsic!

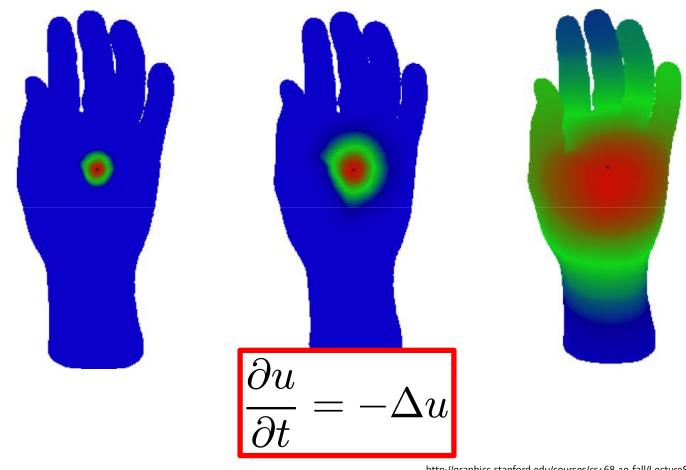
Recall: Hodge Laplacian

$$\Delta = d \star d \star + d \star d$$



Intrinsic operator

Recall: Connection to Physics



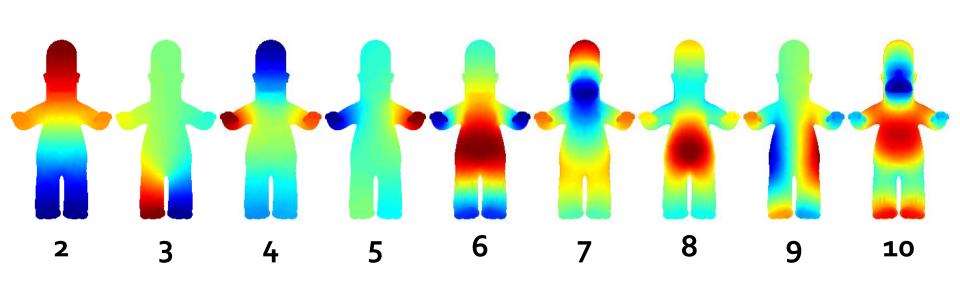
 $http://graphics.stanford.edu/courses/cs468- {\tt 10-fall/LectureSlides/11_shape_matching.pdf}$

Heat equation

Intrinsic Statement

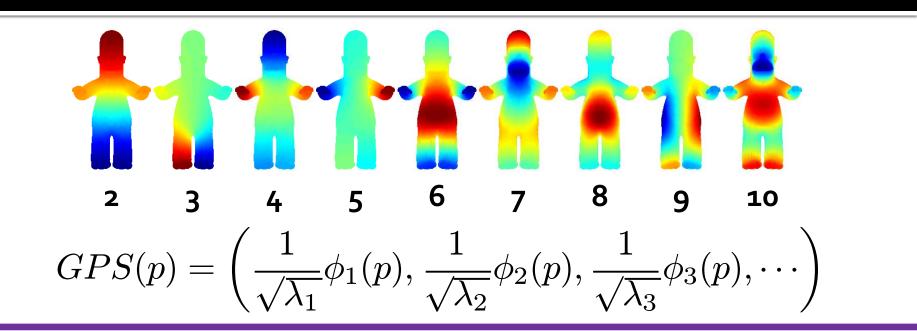
Heat diffusion patterns are not affected if you bend a surface.

Global Point Signature



$$GPS(p) = \left(\frac{1}{\sqrt{\lambda_1}}\phi_1(p), \frac{1}{\sqrt{\lambda_2}}\phi_2(p), \frac{1}{\sqrt{\lambda_3}}\phi_3(p), \cdots\right)$$

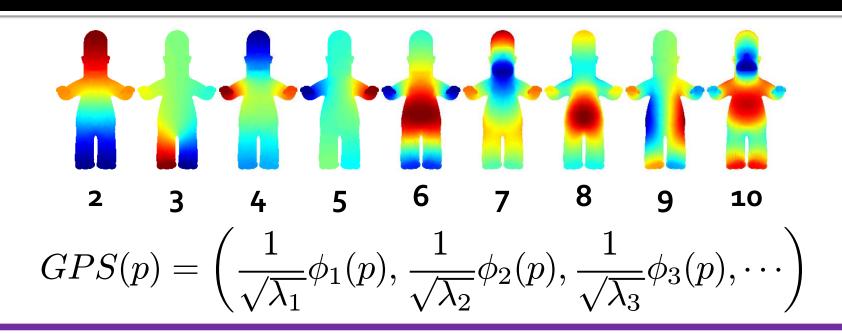
Global Point Signature



If surface does not self-intersect, neither does the GPS embedding.

Proof: Laplacian eigenfunctions span $L^2(\Sigma)$; if GPS(p)=GPS(q), then all functions on Σ would be equal at p and q.

Global Point Signature



GPS is isometry-invariant.

Proof: Comes from the Laplacian.

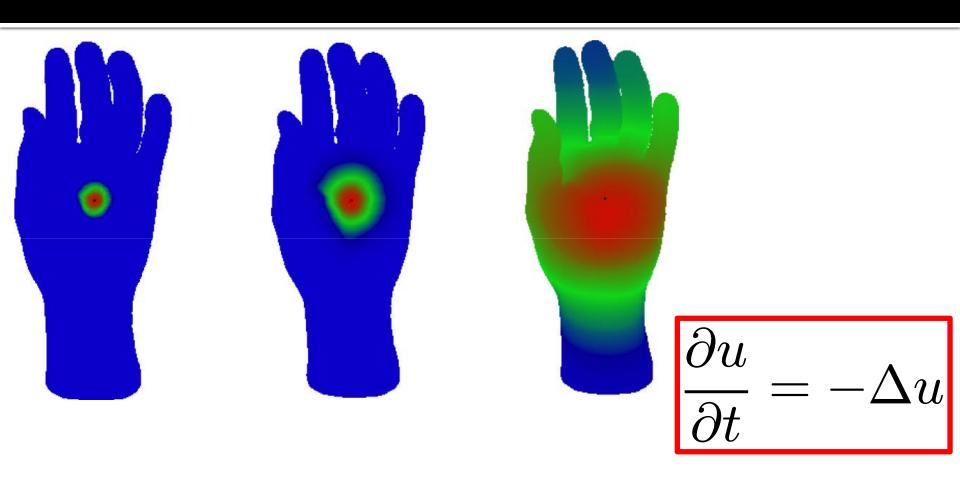
Drawbacks of GPS

-Assumes unique λ's

Potential for eigenfunction "switching"

Nonlocal feature

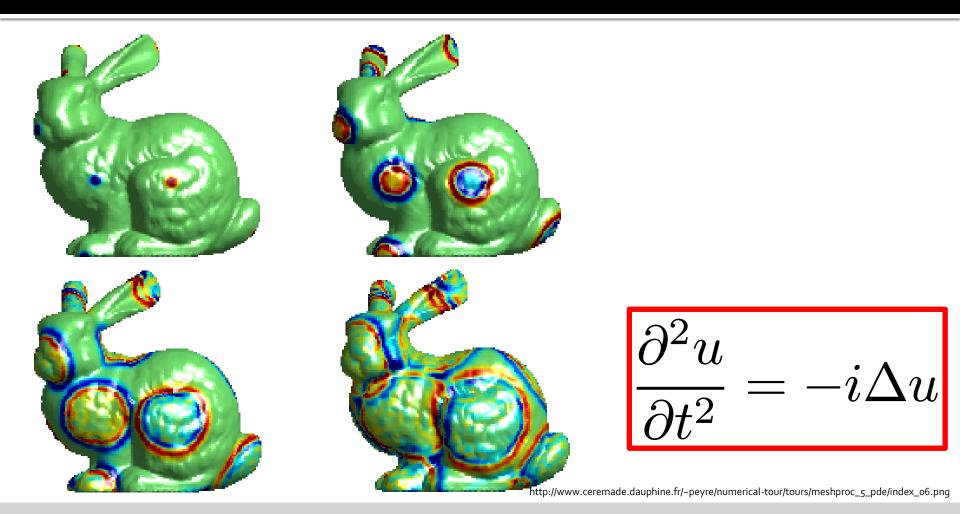
PDE Applications of the Laplacian



http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/11_shape_matching.pdf

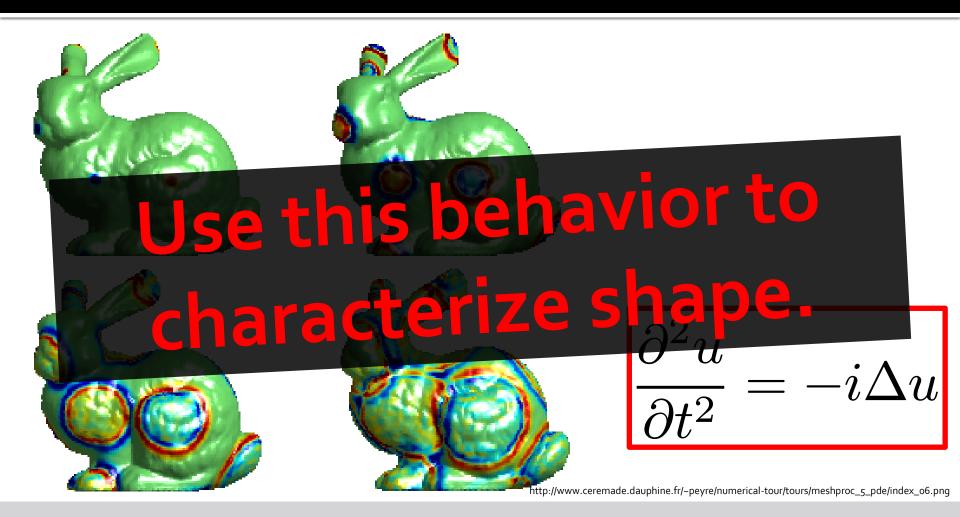
Heat equation

PDE Applications of the Laplacian



Wave equation

PDE Applications of the Laplacian



Wave equation

Solutions in the LB Basis

$$\frac{\partial u}{\partial t} = -\Delta u$$

Heat equation

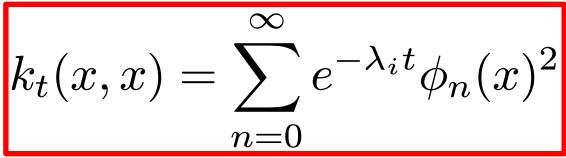
$$u = \sum_{n=0}^{\infty} a_n e^{-\lambda_n t} \phi_n(x)$$

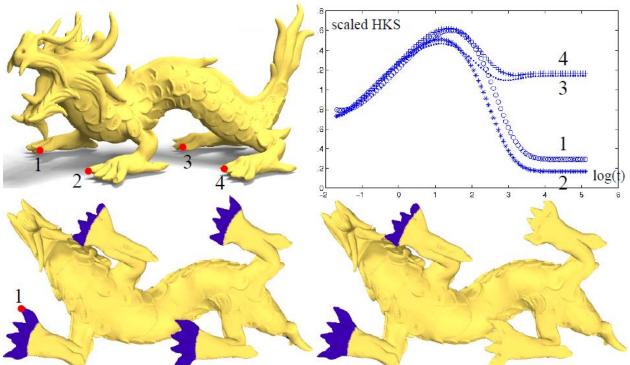
$$\left(a_n = \int_{\Sigma} u_0 \cdot \phi_n \, dA\right)$$

$$k_t(x,x) = \sum_{n=0}^{\infty} e^{-\lambda_i t} \phi_n(x)^2$$

Continuous function on [o,∞)

How much heat diffuses from x to itself in time t?





$$k_t(x,x) = \sum_{n=0}^{\infty} e^{-\lambda_i t} \phi_n(x)^2$$

Good properties:

- Isometry-invariant
- Multiscale
- Not subject to switching
- Easy to compute
- Related to curvature at small scales

$$k_t(x,x) = \sum_{n=0}^{\infty} e^{-\lambda_i t} \phi_n(x)^2$$

Bad properties:

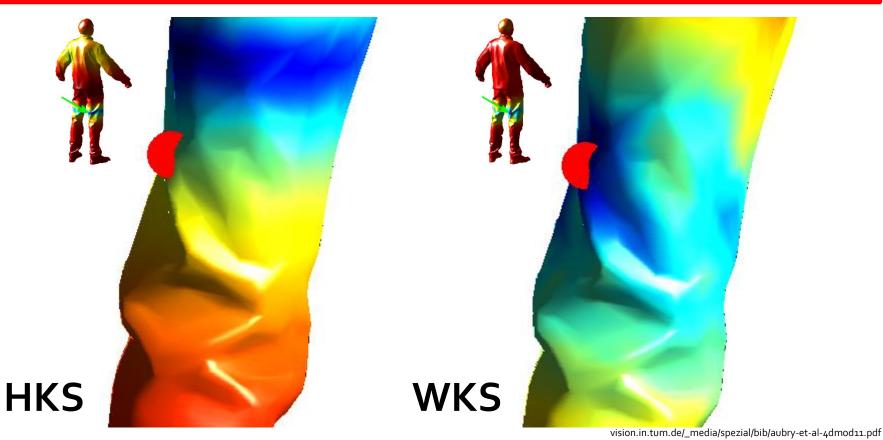
- Issues remain with repeated eigenvalues
- Theoretical guarantees require (near-)isometry

$$WKS(E, x) = \lim_{T \to \infty} \frac{1}{T} \int_0^T |\psi_E(x, t)|^2 dt = \sum_{n=0}^{\infty} \phi_n(x)^2 f_E(\lambda_k)^2$$

Initial energy distribution

Average probability over time that particle is at x.

$$WKS(E, x) = \lim_{T \to \infty} \frac{1}{T} \int_0^T |\psi_E(x, t)|^2 dt = \sum_{n=0}^\infty \phi_n(x)^2 f_E(\lambda_k)^2$$



$$WKS(E, x) = \lim_{T \to \infty} \frac{1}{T} \int_0^T |\psi_E(x, t)|^2 dt = \sum_{n=0}^\infty \phi_n(x)^2 f_E(\lambda_k)^2$$

Good properties:

- [Similar to HKS]
- Localized in frequency
- Stable under some non-isometric deformation
- Some multi-scale properties

$$WKS(E, x) = \lim_{T \to \infty} \frac{1}{T} \int_0^T |\psi_E(x, t)|^2 dt = \sum_{n=0}^{\infty} \phi_n(x)^2 f_E(\lambda_k)^2$$

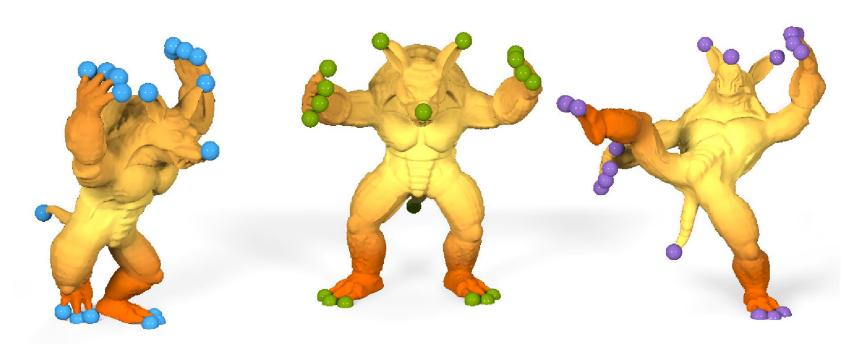
Bad properties:

- [Similar to HKS]
- Can filter out large-scale features

Many Others

Lots of spectral descriptors in terms of Laplacian eigenstructure.

Application: Feature Extraction

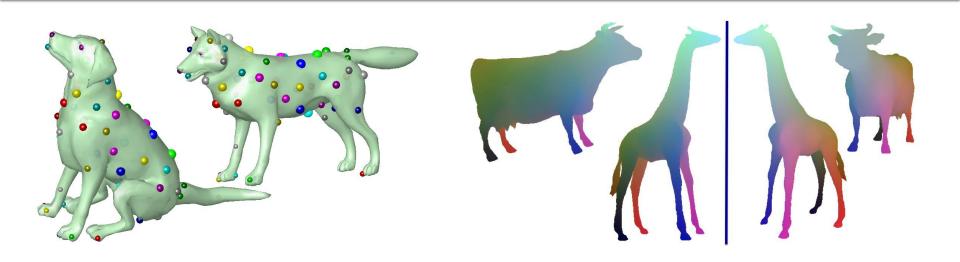


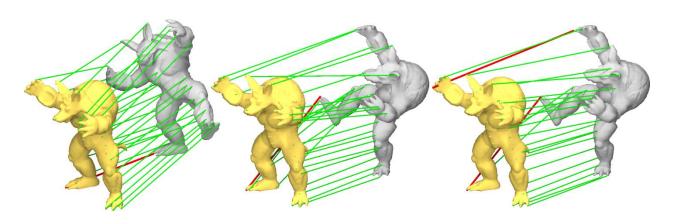
Maxima of $k_t(x,x)$ for large t.

A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion Sun, Ovsjanikov, and Guibas 2009

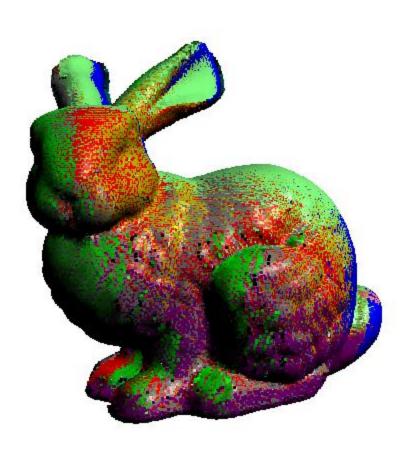
Feature points

Related Problem: Correspondence





Rigid method: Iterative Closest Point (ICP)

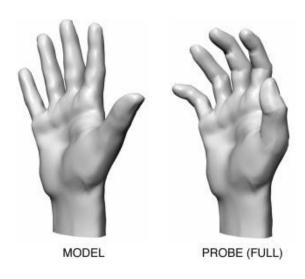


Repeat:

- 1. For each x_i in X, find closest y_i in Y.
- 2. Find rigid deformation (R,T) minimizing

$$\sum_{i} \|(Rx_i + T) - y_i\|$$

Geodesic-based method: GMDS



Embed samples of one surface directly over another by minimizing a "generalized stress" involving geodesics.

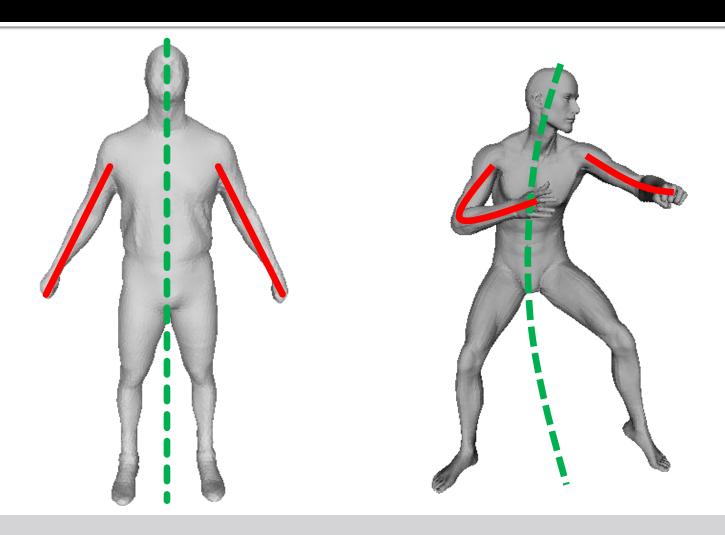
Generalized Multidimensional Scaling
Bronstein, Bronstein, Kimmel 2006

Generalized Multi-Dimensional Scaling

Descriptor Matching

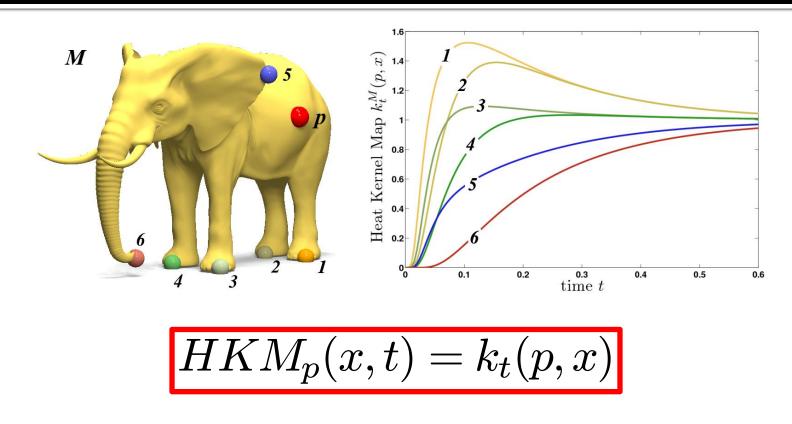
Simply match closest points in descriptor space.

Descriptor Matching Problem



Symmetry

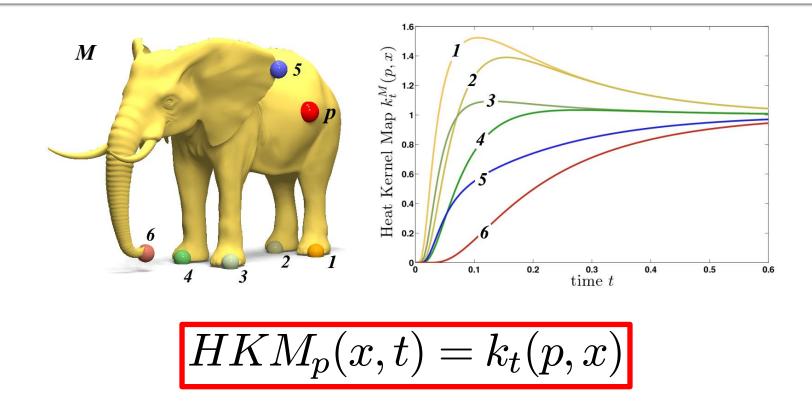
Heat Kernel Map



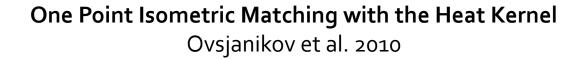
How much heat diffuses from p to x in time t?

One Point Isometric Matching with the Heat Kernel
Ovsjanikov et al. 2010

Heat Kernel Map



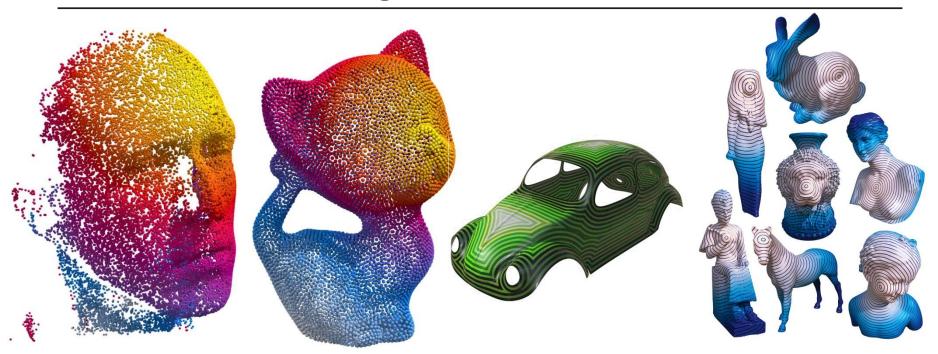
Theorem: Only have to match one point!



Recall: Alternative to Eikonal Equation

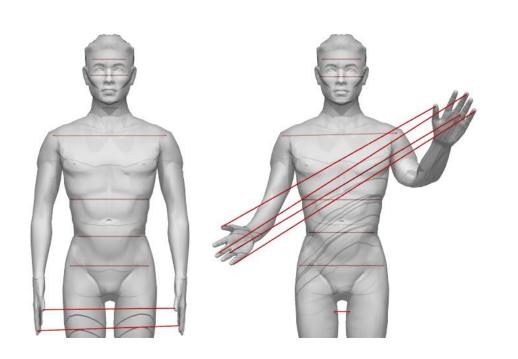
Algorithm 1 The Heat Method

- I. Integrate the heat flow $\dot{u} = \Delta u$ for time t.
- II. Evaluate the vector field $X = -\nabla u/|\nabla u|$.
- III. Solve the Poisson equation $\Delta \phi = \nabla \cdot X$.



Crane, Weischedel, and Wardetzky. "Geodesics in Heat." TOG, to appear.

Self-Map: Symmetry

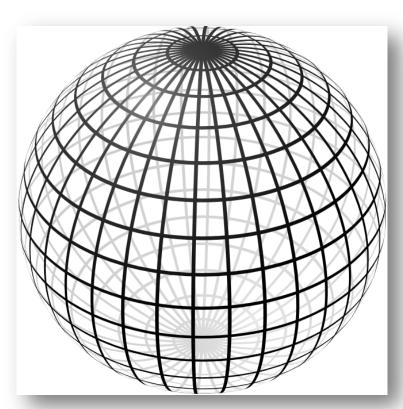


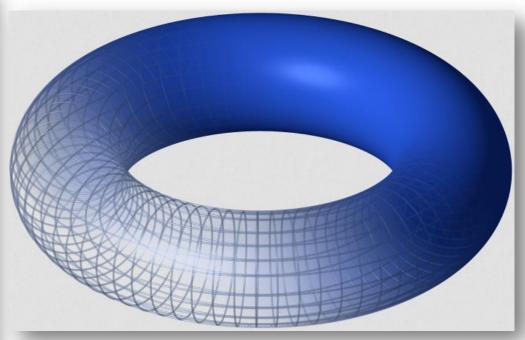
Intrinsic symmetries become extrinsic in GPS space!

Global Intrinsic Symmetries of Shapes
Ovsjanikov, Sun, and Guibas 2008

"Discrete intrinsic" symmetries

Continuous Intrinsic Symmetries?



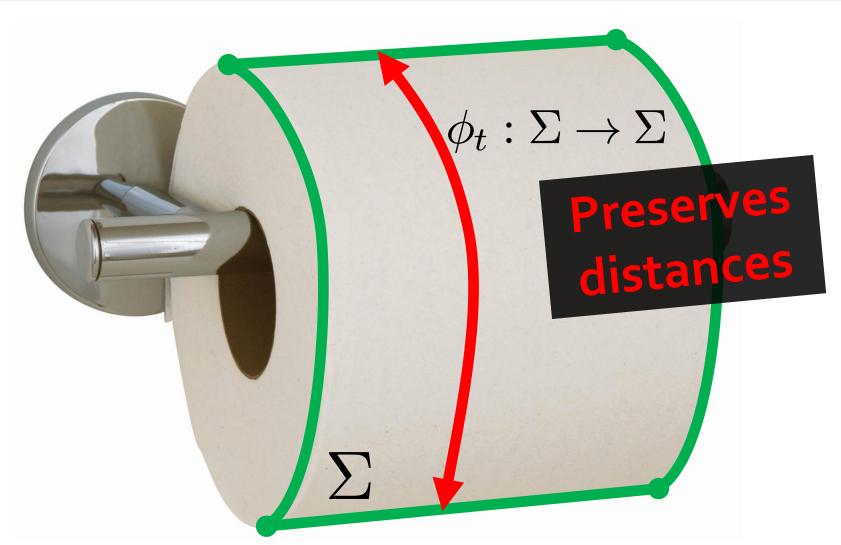


Wikipedia

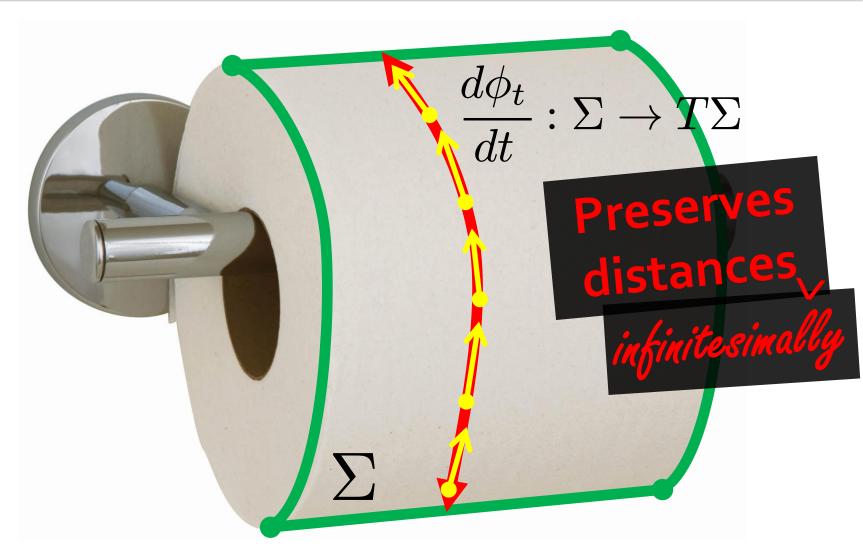
Intrinsic but not descriptor-based

Continuous Symmetries

Continuous Symmetries

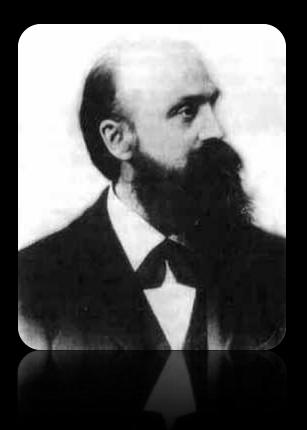


Continuous Symmetries



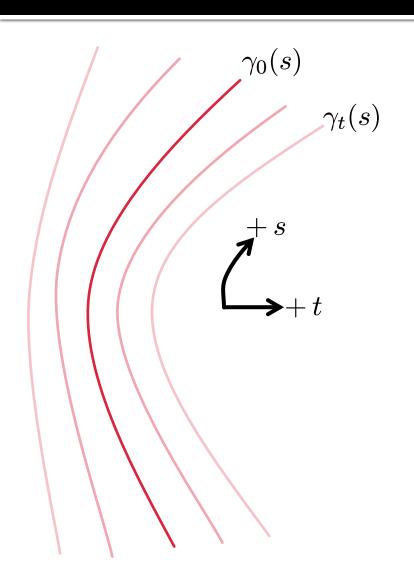
Killing Vector Fields

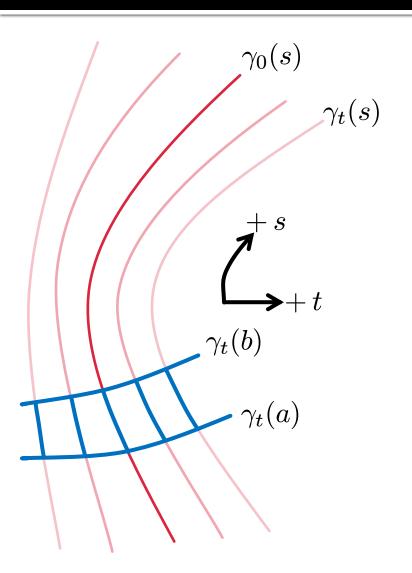
Velocity of Isometric Deformation



Wilhelm Killing 1847-1923 Germany

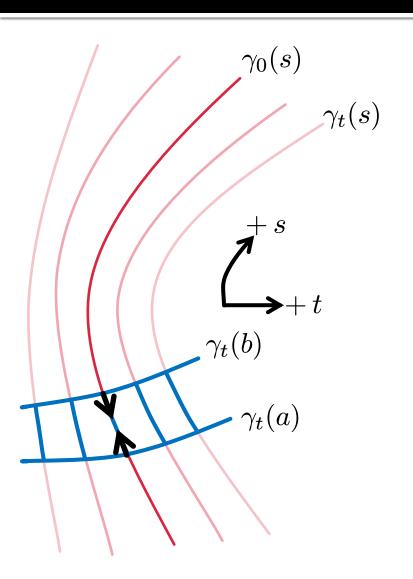
PROTIP Search "Killing vector fields"





Arc length constant in [a,b]:

$$\int_{a}^{b} \|\gamma_{0}'(s)\| ds = \int_{a}^{b} \|\gamma_{t}'(s)\| ds$$



Arc length constant in [a,b]:

$$\int_{a}^{b} \|\gamma_{0}'(s)\| ds = \int_{a}^{b} \|\gamma_{t}'(s)\| ds$$

Holds for all [a,b]:

$$\|\gamma_0'(s)\| = \|\gamma_t'(s)\|$$



Arc length constant in [a,b]:

$$\int_{a}^{b} \|\gamma_{0}'(s)\| ds = \int_{a}^{b} \|\gamma_{t}'(s)\| ds$$

Holds for all [a,b]:

$$\|\gamma_0'(s)\| = \|\gamma_t'(s)\|$$

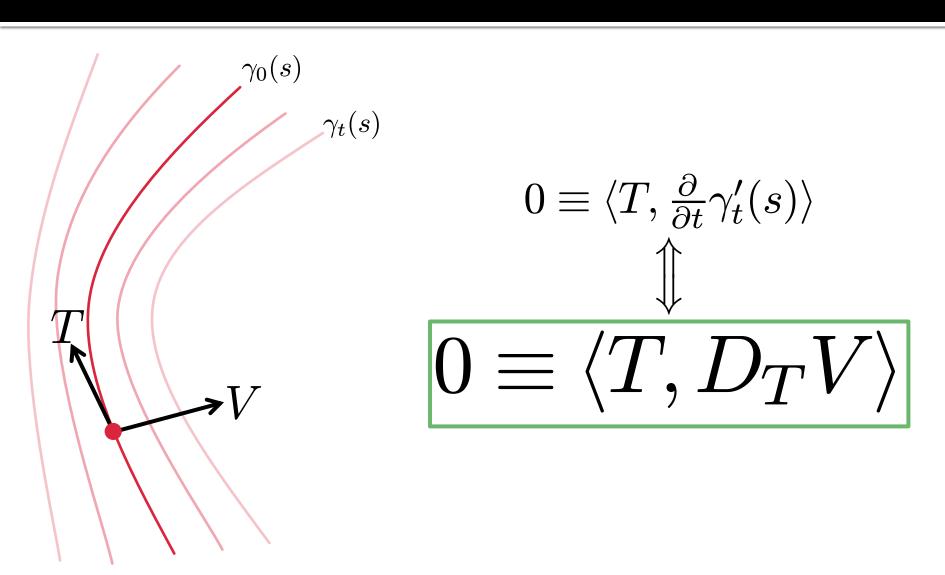
Differentiate in t:

$$0 = \frac{\partial}{\partial t} \| \gamma_t'(s) \|$$

$$= \frac{1}{\| \gamma_t'(s) \|} \left\langle \gamma_t'(s), \frac{\partial}{\partial t} \gamma_t'(s) \right\rangle$$

$$= \left\langle T, \frac{\partial}{\partial t} \gamma_t'(s) \right\rangle$$

First-Order Isometry Condition



KVF Condition

$$0 \equiv \langle T, D_T V \rangle$$

for all tangent vector fields T

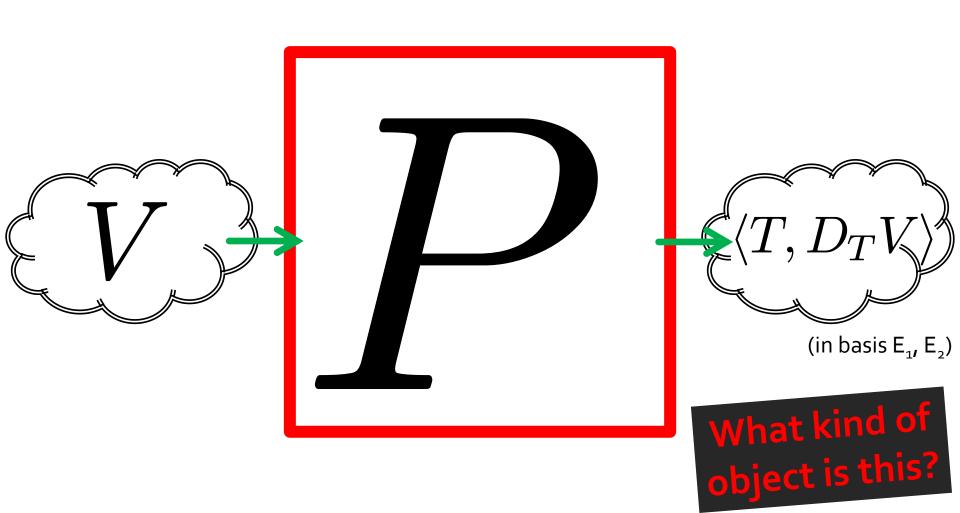
Fix length of all curves

Relationships with KVFs

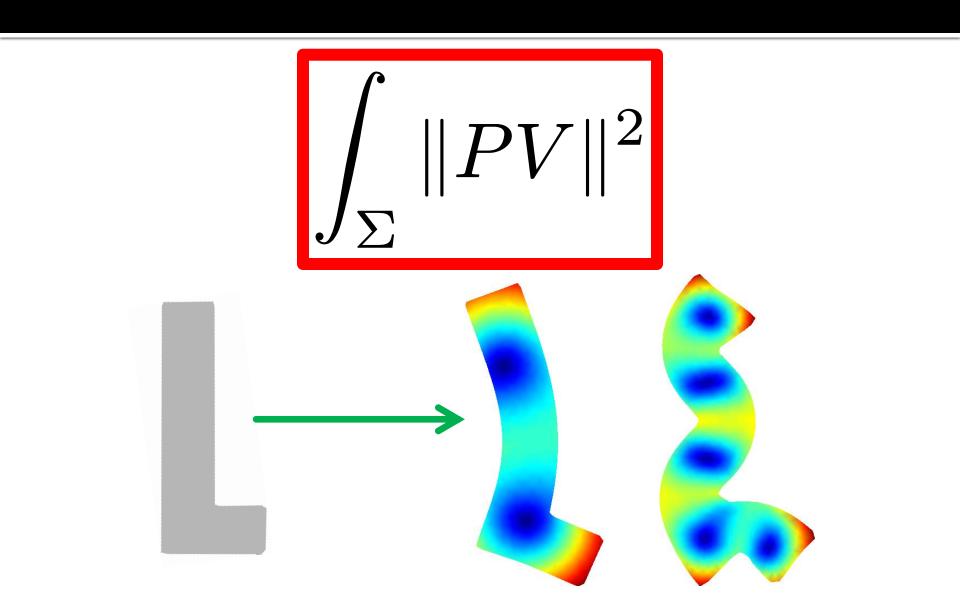
$$0 \equiv \langle T, D_T V
angle$$
 EKVF Same tangential component

$$0 \equiv \langle T, \dot{
abla}_T V
angle$$
 kv

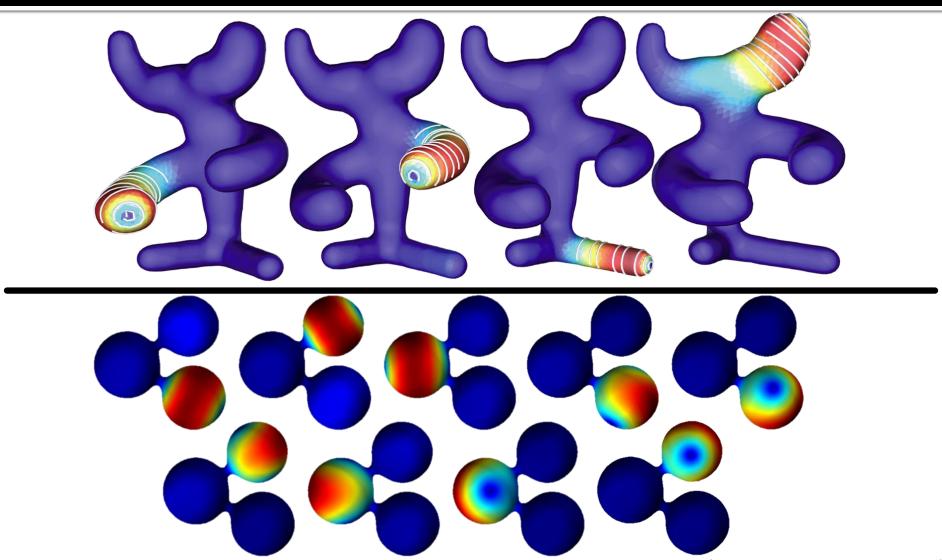
Killing Operator



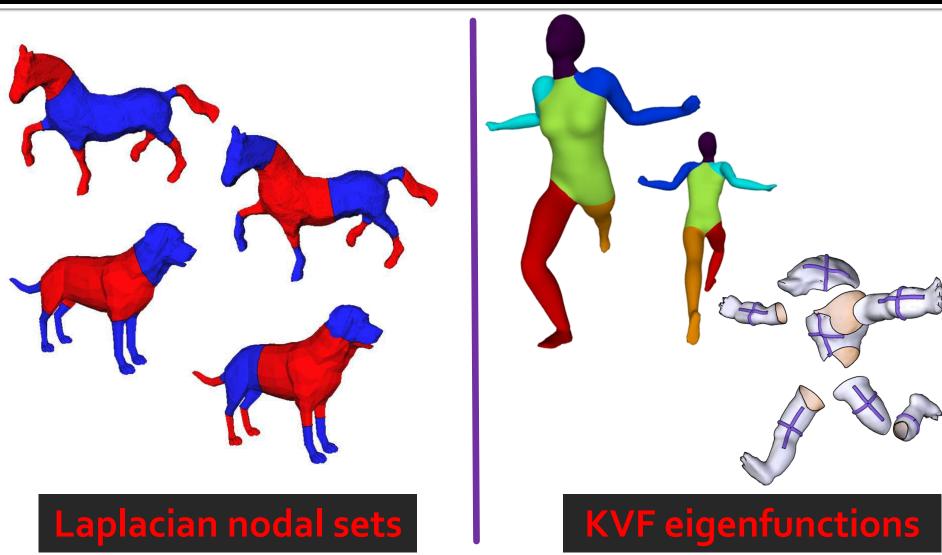
Killing Energy



KVF Operator Eigenfunctions

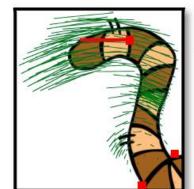


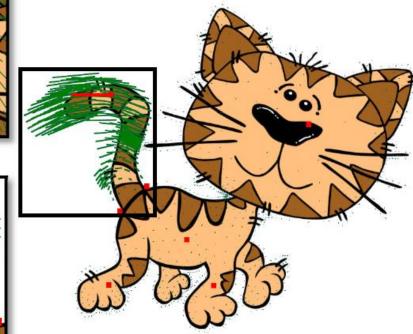
Application: Segmentation



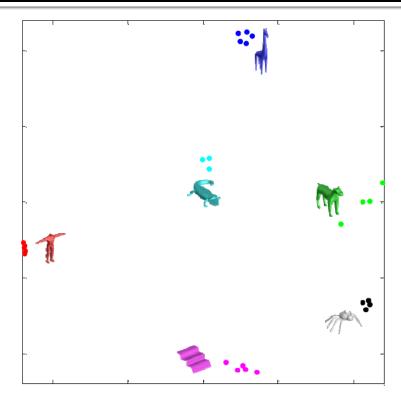
Application: 2D Deformation

$$\min_{V: \to \mathbb{R}^2} \left(\lambda \sum_{p_i \in C} \|V(p_i) - \vec{v}_i\| + \int \|PV\|^2 \right)$$





Application: Shape Distance



Hausdorff

$$\overline{d_H}(X,Y) \equiv \max\{\sup_{x \in X} \inf_{y \in Y} d(x,y), \sup_{y \in Y} \inf_{x \in X} d(x,y)\}\$$

Gromov-Hausdorff

$$d_{GH}(X,Y) \equiv \inf_{I,J \text{ isometries}} d_H(I(X),J(Y))$$

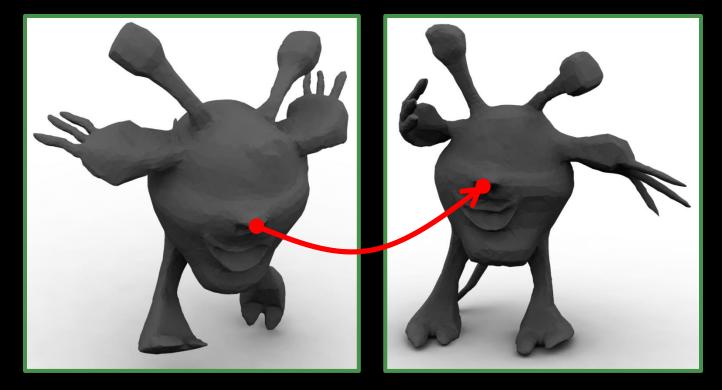
Beware

http://www.cs.technion.ac.il/~mbron/publications_conference.html

Not the same.

Tons of Applications

- Segmentation
- Symmetry detection
- Global shape description
- Retrieval
- Recognition
- Feature extraction
- Alignment
 - . . .



Isometry Invariance and Spectral Techniques

CS 468, Spring 2013
Differential Geometry for Computer Science

Justin Solomon and Adrian Butscher