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Lecture 17 — Surface Deformation



Outline

• Fundamental theorem of surface geometry.

• Some terminology: embeddings, isometries, deformations.

• Curvature flows

• Elastic deformations



The Gauss and Codazzi Equations

Recall the Gauss Equation:

0 = 〈DYDXZ − DXDYZ ,W 〉
= Rm(X ,Y ,Z ,W ) + A(Y ,Z )A(X ,W )− A(X ,Z )A(Y ,W )

The second important equation linking intrinsic and extrinsic
geometry is the Codazzi Equation.

0 = 〈DYDXZ − DXDYZ ,N〉
= ∇A(X ,Y ,Z )−∇A(Y ,X ,Z )

These are key consistency equations which in principle completely
characterize the surface.



Fundamental Theorem of Surface Geometry

Theorem:

Let Ω be an open, simply-connected subset of the plane
equipped with two tensor fields g and A satisfying the Gauss
and Codazzi equations.

Then there exists a mapping φ : Ω → R3 of class C 3 such
that the first and second fundamental forms of the surface
M := φ(Ω) pull back to the tensor fields g and A.

φ is unique up to rigid motions.

Thus: The metric and second fundamental form determine the
surface at least locally.

And: Changes to the surface can be characterized geometrically by
how the metric and second fundamental form change.



Abstract Surfaces, Embeddings and Deformations

There is a notion of an abstract surface.

• This is a two-dimensional manifold that exists on its own,
without reference to the ambient Euclidean space.

Let M be an abstract surface. A map φ : M → R3 is an embedding
if it is a diffeomorphism onto its image and φ(x) = φ(y) iff x = y .

• This is our “usual” definition of a surface.

• Let S = φ(M). Then M inherits a metric and a second
fundamental form from S .

• Isometries are the changes of M that do not change the metric.

• Isometries of M may or may not involve changes of S .

→ Rigid motions, a spherical cap, a developable surface.

• Deformations are changes of S that change both the metric
and second fundamental form.



Curvature Flows

Controlled deformations of a surface arise in a number of ways.

E.g. a family φt of embeddings evolves by mean curvature flow if

dφt
dt

= HtNt

where Ht is the mean curvature of φt and Nt is their unit normal.

Note: We’ve seen this before. One can show that ∆φt = HtNt .
This is Laplacian smoothing.

• So mean curvature is like heat flow except for surfaces! This
wants to dissipate curvature.

• Analytical properties: short-time existence and smoothing.

• Non-linear — long-time existence in doubt, singularities



MCF of Curves in the Plane

A curve γt : S1 → R2 evolves by curve shortening flow if it satisfies

∂γt
∂t

= ktNt

where kt is the geodesic curvature of γt and Nt is its unit normal.

• Suppose that γt = γt(s) is parametrized by arc length. By the
Frenet formulas, the tangent vector satisfies Tt := ∂γt

∂s and

∂2γt
∂s2

=
∂Tt

∂s
= ktNt =

∂γt
∂t

parabolic equations

• Exact solution for a round circle — collapsing to a point.

• Some results.
→ The Gage-Hamilton theorem for convex curves (preservation of

convexity and convergence to a round point in finite time).

→ The Grayson theorem for embedded curves (convergence to a
round point in finite time).



Grayson’s Theorem
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Singularity Formation in Grayson’s Theorem



Singularity Formation in Grayson’s Theorem



Singularity Formation in Grayson’s Theorem



Singularity Formation in Grayson’s Theorem



MCF of Surfaces

What changes for MCF of surfaces in R3?

• We still have a non-linear parabolic system.

• Exact solution for a round sphere — collapsing to a point.

• The Huisken theorem for convex surfaces (convergence to a
round point in finite time).

• Singularities of the mean curvature flow in general — it’s a
tricky business! E.g. a dumb-bell surface.



Three-Dimensional Elasticity Theory

Elasticity theory characterizes deformations of an object by means
of how they affect the induced metric in the reference object.

δ = Euclidean metric

goriginal = δ

gdeformed = φ∗t δ := Dφ>t Dφt
i.e. the pullback of δ under φt

⊆ R3



Basic Principles

Let ρ be the density of M and ρt := ρ ◦ φ−1t be the density of St .
Also, let vt := ∂φt

∂t ◦ φ
−1
t be the spatial velocity of points in St .

The nonlinear equations of elasticity follow from three principles.

1. Mass is conserved:

∂ρt
∂t

+∇ · (ρtvt) = 0

2. Momentum is conserved:

∂ρtv
i
t

∂t
+
∑
j

∇j(ρtv
j
t v

i
t ) = ρtb

i
t +

∑
j

σijN
j

↑
Cauchy Stress Tensor

(The force per unit area on an
internal surface element ⊥ N)

Applied body forces
↓



Basic Principles

The metric hasn’t appeared yet. It encodes the response of the
material to the applied forces.

Define the Dual Right Cauchy-Green Strain Tensor by

E =
1

2

(
gdeformed − gorig

)
=

1

2

(
Dφ>t Dφt − δ

)
Now we have our third principle.

3. The constitutive relation:

σ = P(C � E )

where C is the elasticity tensor and P is the Piola transform
that converts quantities in M to quantities in St .



Elastic Equilibrium

An object is in elastic equilibrium of φt is constant in t.

For hyperelastic materials we can characterize an equilibrium by
means of a variational principle.

φequil = arg min J(φ) :=

ˆ
M
W (x ,E (x))dx

Here, W is the stored energy function. It can take many forms,
depending on the material properties.



Elastic Shells

Consider a thin reference object M := M0 × [−ε, ε] of thickness 2ε.

Propose the form Φ(x1, x2, x3) := φ(x1, x2) + x3N(x1, x2) for
embedding M into R3, where φ : M0 → R3 embeds M0 as a surface.

The plan:

• Make several material and geometric
hypotheses about Φ.

• Expand the 3D equations in ε.

• Derive formal equations
satisfied by φ on S
and M0 alone.

• Prove convergence
as ε→ 0.

• Tricky business!

x3

x

x̂

(Ciarlet ’05)



Elastic Equilibrium of Shells

Equilibrium configurations of shells can also be shown to minimize
an energy functional.

φequil = arg min
φ

ks

ˆ
S
C (δg , δg)dx︸ ︷︷ ︸
stretching energy

+kb

ˆ
S
C (δA, δA)dx︸ ︷︷ ︸
bending energy

where δg := gorig − gdeformed and δA := Aorig − Adeformed and ks , kb
are constants depending on assumptions and shell thickness.

Under certain assumptions on C , we can simplify to

stretching energy =

ˆ
S
‖gorig − gdeformed‖2dx

bending energy =

ˆ
S
‖Aorig − Adeformed‖2dx


