CS 468

DIFFERENTIAL GEOMETRY FOR COMPUTER SCIENCE

Lecture 17 — Surface Deformation

Outline

- Fundamental theorem of surface geometry.
- Some terminology: embeddings, isometries, deformations.
- Curvature flows
- Elastic deformations

The Gauss and Codazzi Equations

Recall the Gauss Equation:

$$0 = \langle D_Y D_X Z - D_X D_Y Z, W \rangle$$

= Rm(X, Y, Z, W) + A(Y, Z)A(X, W) - A(X, Z)A(Y, W)

The second important equation linking intrinsic and extrinsic geometry is the Codazzi Equation.

$$0 = \langle D_Y D_X Z - D_X D_Y Z, N \rangle$$

= $\nabla A(X, Y, Z) - \nabla A(Y, X, Z)$

These are key consistency equations which in principle completely characterize the surface.

Fundamental Theorem of Surface Geometry

Theorem:

Let Ω be an open, simply-connected subset of the plane equipped with two tensor fields g and A satisfying the Gauss and Codazzi equations.

Then there exists a mapping $\phi:\Omega\to\mathbb{R}^3$ of class C^3 such that the first and second fundamental forms of the surface $M:=\phi(\Omega)$ pull back to the tensor fields g and A.

 ϕ is unique up to rigid motions.

Thus: The metric and second fundamental form determine the surface at least locally.

And: Changes to the surface can be characterized geometrically by how the metric and second fundamental form change.

Abstract Surfaces, Embeddings and Deformations

There is a notion of an abstract surface.

• This is a two-dimensional manifold that exists on its own, without reference to the ambient Euclidean space.

Let M be an abstract surface. A map $\phi: M \to \mathbb{R}^3$ is an embedding if it is a diffeomorphism onto its image and $\phi(x) = \phi(y)$ iff x = y.

- This is our "usual" definition of a surface.
- Let $S = \phi(M)$. Then M inherits a metric and a second fundamental form from S.
- Isometries are the changes of *M* that do not change the metric.
- Isometries of M may or may not involve changes of S.
 - → Rigid motions, a spherical cap, a developable surface.
- Deformations are changes of *S* that change both the metric and second fundamental form.

Curvature Flows

Controlled deformations of a surface arise in a number of ways.

E.g. a family ϕ_t of embeddings evolves by mean curvature flow if

$$\frac{d\phi_t}{dt} = H_t N_t$$

where H_t is the mean curvature of ϕ_t and N_t is their unit normal.

Note: We've seen this before. One can show that $\Delta \phi_t = H_t N_t$. This is Laplacian smoothing.

- So mean curvature is like heat flow except for surfaces! This wants to dissipate curvature.
- Analytical properties: short-time existence and smoothing.
- Non-linear long-time existence in doubt, singularities

MCF of Curves in the Plane

A curve $\gamma_t:\mathbb{S}^1 \to \mathbb{R}^2$ evolves by curve shortening flow if it satisfies

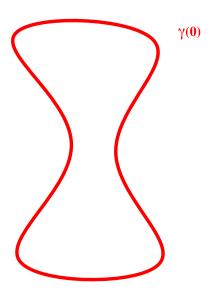
$$\frac{\partial \gamma_t}{\partial t} = k_t N_t$$

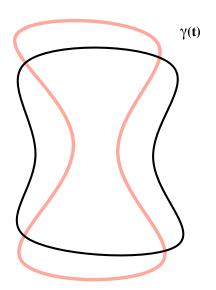
where k_t is the geodesic curvature of γ_t and N_t is its unit normal.

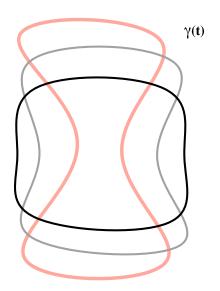
• Suppose that $\gamma_t = \gamma_t(s)$ is parametrized by arc length. By the Frenet formulas, the tangent vector satisfies $T_t := \frac{\partial \gamma_t}{\partial s}$ and

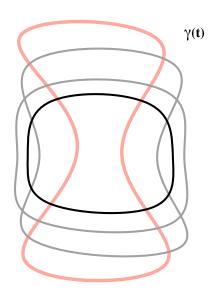
$$\frac{\partial^2 \gamma_t}{\partial s^2} = \frac{\partial T_t}{\partial s} = k_t N_t = \frac{\partial \gamma_t}{\partial t}$$
 parabolic equations

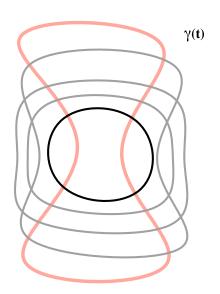
- Exact solution for a round circle collapsing to a point.
- Some results.
 - ightarrow The Gage-Hamilton theorem for convex curves (preservation of convexity and convergence to a round point in finite time).
 - → The Grayson theorem for embedded curves (convergence to a round point in finite time).

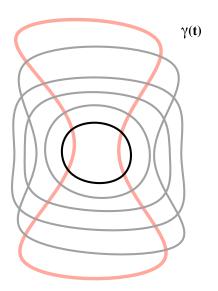


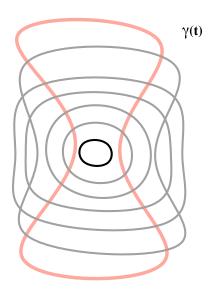


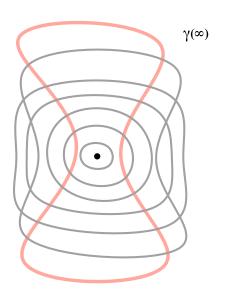


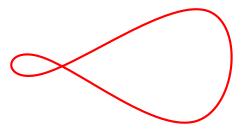


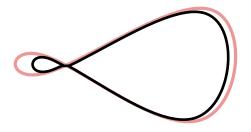


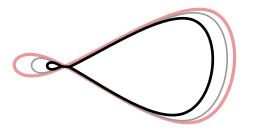


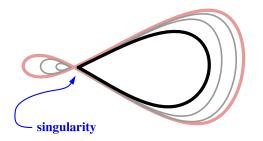








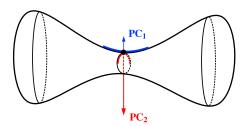




MCF of Surfaces

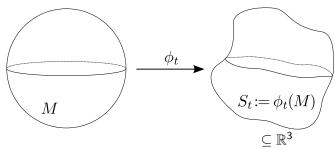
What changes for MCF of surfaces in \mathbb{R}^3 ?

- We still have a non-linear parabolic system.
- Exact solution for a round sphere collapsing to a point.
- The Huisken theorem for convex surfaces (convergence to a round point in finite time).
- Singularities of the mean curvature flow in general it's a tricky business! E.g. a dumb-bell surface.



Three-Dimensional Elasticity Theory

Elasticity theory characterizes deformations of an object by means of how they affect the induced metric in the reference object.



$$\delta = {\sf Euclidean\ metric}$$

$$g_{original} = \delta$$
 $g_{deformed} = \phi_t^* \delta := D \phi_t^\top D \phi_t$ i.e. the pullback of δ under ϕ_t

Basic Principles

Let ρ be the density of M and $\rho_t := \rho \circ \phi_t^{-1}$ be the density of S_t . Also, let $v_t := \frac{\partial \phi_t}{\partial t} \circ \phi_t^{-1}$ be the spatial velocity of points in S_t .

The nonlinear equations of elasticity follow from three principles.

1. Mass is conserved:

$$\frac{\partial \rho_t}{\partial t} + \nabla \cdot (\rho_t v_t) = 0$$

2. Momentum is conserved: Applied body forces

$$\frac{\partial \rho_t v_t^i}{\partial t} + \sum_j \nabla_j (\rho_t v_t^j v_t^i) = \rho_t b_t^i + \sum_j \sigma_j^i N^j$$

Cauchy Stress Tensor (The force per unit area on an internal surface element $\perp N$)

Basic Principles

The metric hasn't appeared yet. It encodes the **response** of the material to the applied forces.

Define the Dual Right Cauchy-Green Strain Tensor by

$$E = rac{1}{2}ig(g_{deformed} - g_{orig}ig) = rac{1}{2}ig(D\phi_t^ op D\phi_t - \deltaig)$$

Now we have our third principle.

3. The constitutive relation:

$$\sigma = \mathcal{P}(C \odot E)$$

where C is the elasticity tensor and P is the Piola transform that converts quantities in M to quantities in S_t .

Elastic Equilibrium

An object is in elastic equilibrium of ϕ_t is constant in t.

For hyperelastic materials we can characterize an equilibrium by means of a variational principle.

$$\phi_{equil} = \arg \min J(\phi) := \int_{M} W(x, E(x)) dx$$

Here, W is the stored energy function. It can take many forms, depending on the material properties.

Elastic Shells

Consider a thin reference object $M := M_0 \times [-\varepsilon, \varepsilon]$ of thickness 2ε .

Propose the form $\Phi(x^1, x^2, x^3) := \phi(x^1, x^2) + x^3 N(x^1, x^2)$ for embedding M into \mathbb{R}^3 , where $\phi: M_0 \to \mathbb{R}^3$ embeds M_0 as a surface.

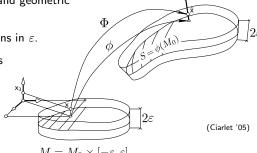
The plan:

 Make several material and geometric hypotheses about Φ.

• Expand the 3D equations in ε .

• Derive formal equations satisfied by ϕ on S and M_0 alone.

- Prove convergence as $\varepsilon \to 0$.
- Tricky business!



Elastic Equilibrium of Shells

Equilibrium configurations of shells can also be shown to minimize an energy functional.

$$\phi_{equil} = \arg\min_{\phi} \quad k_s \underbrace{\int_{S} C(\delta g, \delta g) dx}_{\text{stretching energy}} + k_b \underbrace{\int_{S} C(\delta A, \delta A) dx}_{\text{bending energy}}$$

where $\delta g := g_{orig} - g_{deformed}$ and $\delta A := A_{orig} - A_{deformed}$ and k_s , k_b are constants depending on assumptions and shell thickness.

Under certain assumptions on C, we can simplify to

stretching energy =
$$\int_{S} \|g_{orig} - g_{deformed}\|^2 dx$$

bending energy = $\int_{S} \|A_{orig} - A_{deformed}\|^2 dx$

