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End of Course Approaching!

Homework 4: June g
Project: June 6

Scribe notes: One week
after, June 6 at latest

Course reviews



Until Now
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Mostly static geometry



Designing Flexible Surfaces

A
f'\b
TN

Articulation, skinning, etc. are
difficult and repetitive




Less Obvious: Smoothing

http://multires.caltech.edu/pubs/ImplicitFairing.pdf



Theoretical Viewpoint

Abstract surface

Topology plus distances

Embedding

How the surface sits in R3

Change one, the other, or both



Most Common Technique

Modify embedding directly but
characterize effect on intrinsic

structure. |
Near—isome t/% aw((fama//'tf, clastie. ..



Example: Mean Curvature Flow

Li+1 — Ly
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“Implicit Fairing of Irregular Meshes”
Desbrun, Meyer, Schroder, Barr; SIGGRAPH ‘99

Change embedding



Variation: Anisotropic MC Flow
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“Anisotropic Filtering of Non-Linear
Surface Features”

Hildebrandt, Polthier

Eurographics 2004



Explicit Integration Strateqgy

AnisotropicSmoothing (M. A, s. n)
for (steps=l...n)
Ay =0
for each edge e = (vi,v;)
compute He,Ne
A; [vi]— = (wy (He) He) * Ne
Ay [vi]— = (wy (He) He) * Ne
for each triangle f = (v;,v;, vg)
compute arear
areaStar|v; |[+=area;
areaStar|v;|+=area:
areaStar|[vy |+=area;
for each vertex v
v+ = 3s/(2areaStar|v]) x Ay [v]
return M




Prescribed MC Flow

By definition, mean curvature
flow wants to decrease surface

dleéad.
7;? 1o emoolh rather than reduce mean carvature.




PMC Flow: Idea
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“Anisotropic Filtering of Non-Linear Surface Features” 7H4il'cflebrandt, Polthier; EG 2004



Different Example of Deformation

http://geometryfactory.com/wp/wp-content/uploads/2011/12/deformation.png

Surface editing



Elasticity: GeometricView
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0 = Euclidean metric
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i.e. the pullback of & under ¢¢



Variational Point of View

J () E/SW(:C,E(:E))CZ:B

Energy measures deformation



Common Energy Terms
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Egtretch = /S Hgorig ~ Ydeformed I~ 4z

http://farm3.static.flickr.com/2693/4132058909_4dc6f675b7.jpg
http://www.popularmechanics.com/cm/popularmechanics/images/inventables-15-470-0109-39874288.jpg



Deformation energies are highly
nonlinear.

Common Energy Terms
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Result of Linearization

Robust

Fast

Not rotation-
Invariant!

http://graphics.ethz.ch/Downloads/Publications/Papers/2008/Boto8/Boto8.pdf




Linear Approach

(a) (b)

Figure 3: The editing process. (a) The user selects the region of interest — the upper lip of the dragon. bounded by the belt of stationary
anchors (in red). (b) The chosen handle (enclosed by the yellow sphere) 1s manipulated by the user: translated and rotated. (¢) The editing
result.

“Laplacian Surface Editing”
Sorkine et al.
SGP 2004



Laplacian Coordinates
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minimize ZH(S — L(v)||* + ZHU;_U”LHZ

1eC

Translation-invariant coordinates



Problem

or scale invariant



Resolution

minimize Z |T;6; — L(v})|]” + Z v — il

1 ‘ 1eC

Trick: RestrictT to set of desirable
transformations (or approximation thereof)

Mgim = S(CVI _I_ﬂH_l_fYFLTFL)

Transform source & with vertices




Linear Approximation

minimize Z |T;6; — L(v})|]” + Z v — il

1 ‘ 1eC

Trick: RestrictT to set of desirable
transformations (or approximation thereof)

Mgim = S(CVI—I—ﬂH—I—”)/®

Transform source & with vertices




Limits of Approximation

“On Linear Variational Surface
Deformation Methods”
Botsch and Sorkine
TVCG 2008

http://graphics.ethz.ch/Downloads/Publications/Papers/2008/Boto8/Boto8.pdf



Nonlinear Approach

To appear at the Eurographics Symposium on Geometry Processing (2007)
Alexander Belyaev, Michael Garland (Editors)

As-Rigid-As-Possible Surface Modeling

Olga Sorkine and Marc Alexa

TU Berlin, Germany

Abstract

Modeling rasks, such as surface deformation and editing, can be analyzed by observing the local behavior of the
surface. We argue that defining a modeling operation by asking for rigidity of the local transformations is usefiul
in various settings. Such formulation leads to a non-linear, yet conceptually simple energy formulation, which is
to be minimized by the deformed surface under particular modeling constraints. We devise a simple iterative mesh
editing scheme based on this principle, that leads to detail-preserving and intuitive deformations. Our algorithm
is effective and notably easy to implement, making it attractive for practical modeling applications.

Categories and Subject Descriptors (according to ACM CCS): L3.5 [Computer Graphics]: Computational Geometry
and Object Modeling — geometric algorithms, languages, and systems




As-Rigid-As-Possible

Want:
For each cell C;around vertex 1

—pj) Vi € N(3)

" i

Try to enforce local isometry




ARAP Cell Energy

s

E(Ci,C)) = Y  wgll(p; — p}) — Ri(ps — p;)|I
JEN (4)

E(S') = ZwiE(Ci,Cg)




ARAP Cell Energy




Alternating Approach

B¢ = Y wylB)-F) - R )P

JEN (1)
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Vertex positions: Linear




Alternating Approach

argming. Z wijlle]; — Rie;;||* = argmaxy, Z W;;€; Rew
FEN (4) FEN(3)

= arg maxp 1r ( E W; €€ m>

JEN(7)
= argmaxp_ Tr (R;S;)

S, =Uxv’

Tr(R;S;) = Te(R,USV ") = Te(V I R,UY)

» T
= Tr(RY) = diag R - diag ¥ R — I — RZ — VU

. ZO}; fOI‘R:I

Rotation matrices: SVD



Vertices fixed by user

Initialize optimization
with simpler method

Alternating optimization



Results
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initial guess | 1teration

initial guess | 1teration 4 iterations

http://igl.ethz.ch/projects/ARAP/arap_web.pdf



Results

https://www.youtube.com/watch?v=ItX-qUjbkdc



Willmore Energy
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Conformal-invariant bending energy



Research Opportunity

mathoverflow

Tweetable way to see that Willmore energy is Mobius invariant?

The Willmore energy W = [y, H2d A differs from the functional
W = f (H? - K)dA
M
just by a constant as one can see from the Gauss - Bonnet theorem (K here is the Gaussian curvature
of M).

The expression H2 — K in W is the half of the square of the length of the trace-free part of the second
fundamental form which is a (pointwise) conformally invariant density of conformal weight —2, while "dA"

can be seen as a density with conformal weight 2, so the entire integrand (H2 — K)dA is independent
of a choice of a metric.

Thus W is manifestly conformally, and in particular, Mabius invariant. So is W.

{A Liouville's theorem ensures that conformal maps of B™, n = 3, are restrictions of Mabius
transformations.)

Edit. The above is an attempt to address the original request for a "tweetable” argument.

Of course, the precise statement is that the Willmore energy is conformally invariant with respect to the
conformal transformations of the ambient space. (Otherwise we would not be able to invoke the
Liouville's theorem).

The correct definition of the Willmore energy involves an immersion f: M — R* and the induced

conformal structure on the immersed manifold. The Dirac spheres show, in particular, that the Willmore
energy does depend on the immersion.

http://mathoverflow.net/questions/g9555/tweetable-way-to-see-that-willmore-energy-is-mobius-invariant



Discretization of Bending Energy

Eurographics Symposium on Geometry Processing (2006)
Konrad Polthier, Alla Sheffer (Editors)

A Quadratic Bending Model for Inextensible Surfaces

Miklés Bergou Max Wardetzky David Harmon Denis Zorin Eitan Grinspun
Columbia University  Freie Universitit Berlin - Columbia University New York University Columbia University
Abstract

Relating the intrinsic Laplacian to the mean curvature normal, we arrive at a model f'm‘ !chndr'n o n,f':'nvr{w: sible
surfaces. Due to its constant Hessian, our isometric bending model reduces cloth si- o Hnld

Categories and Subject Descriptors (according to ACM CCS): [.3.5 [Computer Grapl 2
and Object Modeling li;b p— l i dA



Application in Dynamics

L2 ]

http://www.cs.columbia.edu/cg/pdfs/g-QuadBend.pdf



Desirable Properties

Quadratic in vertex positions

Invariant under isometry
“Isometry” = preserved edge lengths

Invariant under rigid motion

Invariant under uniform scaling



Quadratic Energy

1 S5
Ey, = §ZQz’j<$z‘,$g’>
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Q must be positive semi-definite
Convex energy

Q must be constructed from intrinsic

properties
Edge lengths, interior angles, areas, etc.

Rows and columns sum to o
By translation invariance



Scale-Based Factorization
Ey=_2  (L'"M*L)z!,

——

Looks like finite elements.
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If the surface deforms
Isometrically, thenQis

unchanged.
$s, pre-frotor the & matris o sinplifyy sobves.



Results
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A Quadratic Bending Model
for Inextensible Surfaces

Mikl6s Bergou, Max Wardetzky, David Harmon,
Denis Zorin, and Eitan Grinspun

http://www.cs.columbia.edu/cg/quadratic/



Hidden Problem: Unresolved

Connection Lo

f/wc/w/a aZ/zw‘/'Ifé/w?

Fixing edge lengths doesn’t always
approximate smooth isometry.



Three Ideas of Surface Deformation

Smoothing and fairing
Static deformation

Dynamic deformation

Different models and discretizations



Tip of an Iceberg

Geometry Processing Algorithms

Polygon Mesh
Processing cs468 - Spring 2012

Mario Botsch

Mark Pauly
Pierre
‘Bruno Lévy

http://www.ams.org/samplings/feature-column/fcarc-harmonic
http://www.cs.technion.ac.il/~gotsman/AmendedPubl/Miri/Variational_Harmonic_Maps.pdf
http://www.stanford.edu/~justso1/assets/kvf_deformation.pdf
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